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ABSTRACT

Name of student: Akavarapu V.S.D.S. Mahesh Roll no: 19111265
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Thesis title: Evolutionary Insights into Language Change: Cognate Transformer and
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Name of Thesis Supervisor: Prof. Arnab Bhattacharya

Month and year of thesis submission: June, 2024

Several central problems of historical linguistics, the study of language change, involve

strenuous manual labor whether in the case of identification of cognates, reconstruction of

proto-languages, or that of classification of languages. Computational historical linguistics,

thus, aims to assist the linguistics through automation of these tasks. We introduce novel

methods inspired by computational biology that achieve state-of-the-art results on several

tasks discussed as follows.

Firstly, we introduce the Cognate Transformer based on the MSA Transformer, a

protein language model, to the problems of automated phonological reconstruction and

associated cognate reflex prediction. Phonological reconstruction involves predicting

the proto-word of an ancestral language from the observed cognate words of daughter

languages. In cognate reflex prediction, on the other hand, a reflex word in a daughter

language is predicted based on cognate words from other daughter languages. We show that

our model outperforms the existing models on both tasks, especially when it is pre-trained

on masked word prediction task.

Secondly, we adapt the Cognate Transformer to the task of automated cognate detection

by incorporating some modules from Alphafold2, a protein fold predictor. To utilize the

labeled information to the fullest, we advocate for a supervised approach where beyond
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a certain amount of supervision, the method outperforms existing methods. We also

demonstrate that accepting multiple sequence alignments as input and having an end-to-

end architecture with a link prediction head saves a significant amount of computation

time.

Thirdly, inspired by molecular phylogenetics, we propose a likelihood ratio test to

determine if given languages are related based on the proportion of phonetically conserved

sites. Lexical resemblances among a group of languages indicate that the languages could

be genetically related, i.e., they could have descended from a common ancestral language.

However, such resemblances can arise by chance and, hence, need not always imply an

underlying genetic relationship. Hence, a genetic relationship should be demonstrated

through a significance test. We show that existing multilateral permutation-based tests are

prone to yield false positives while our approach overcomes this problem. We demonstrate

that the test supports the existence of sub-groupings of two macro-families, namely Mayan-

Mixe-Zoque in the case of Macro-Mayan and most importantly, in the case of Nostratic

family, the sub-grouping of Indo-European and Dravidian languages.
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Chapter 1

Introduction

āriyamun-tamilum ut.anē collik-kārikaiyārkkuk-karun. ai ceytānē

“Then did He in Sanskrit and Tamil at once, Reveal the rich treasure of His

Compassion to our Lady Great.1”

– Tirumantiram 65, Tirumūlar, ∼400-800 CE, Tiruvāvat.uturai

1.1 Problem Statement

Languages are prone to change both phonologically and grammatically with time, leading

to diversification across geographical spans, thereby subsequently giving rise to dialects or

ultimately new languages. In this process, languages form groups of “language families”

or phylogenies which reflect their ancestry. Languages that arise from a common ancestral

language are termed to be genetically related, and they often carry the signatures of

common ancestry in the form of lexical resemblances or cognates. Historical linguistics is

a discipline that aims to study such diachronic evolution of languages. Typical tasks include

identifying cognates, reconstructing ancestral languages or proto-languages, classification

of languages into language families, etc. (Campbell, 2013). These tasks often demand a

great amount of manual effort. Thus, there is a need for automation to assist the historical

linguists.

1English Translation from Tirumantiram, Sri Ramakrishna Math, Mylapore, Chennai
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The field of computational historical linguistics, thus, aims to alleviate the human labor

that goes into historical linguistics. Owing to the similarities with evolutionary biology,

this field significantly borrows several concepts and techniques such as sequence alignment,

phylogenetic inference, and others from computational biology and bioinformatics (Jäger,

2019). These techniques in combination with those of natural language processing, string

comparison, and machine learning are employed for the problems of historical linguistics

such as significance testing of genetic relationship (Oswalt, 1970; Ringe, 1992, 1996;

Kessler, 2001; Kessler and Lehtonen, 2006; Kessler, 2007), phonemic sequence alignment

(Kondrak, 2000; Bhargava and Kondrak, 2009; List, 2010), automated cognate detection

(List, 2010, 2012b,a; Rama, 2016; Jäger and Sofroniev, 2016; Jäger et al., 2017; List et al.,

2017; Rama and List, 2019; MacSween and Caines, 2020), proto-language reconstruction

(Bouchard-Côté et al., 2013; Ciobanu and Dinu, 2018; Meloni et al., 2021; List et al.,

2022a,b; Kim et al., 2023), phylogenetic inference (Jäger, 2015, 2018; Rama et al., 2018;

Rama and List, 2019) and several others.

Among the problems stated above, this thesis addresses the problems of automated

cognate detection, automated phonological reconstruction, and significance testing of

genetic relationships. In cognate detection, cognates, i.e., words that descend from a

common ancestral word are identified from multilingual wordlists across each concept or

meaning. On the other hand, in phonological reconstruction or simply, proto-language

reconstruction, the proto-word forms of an ancestral language are reconstructed based on

the attested cognates among the daughter languages. As an illustration, consider some

words in a few Indo-European languages for the concept ‘I’, namely, Sanskrit ahám, Greek

egó, Latin egō, German ich, and Lithuanian aš, which are cognates. The corresponding

proto-form2 for this meaning in ancestral Proto-Indo-European can be reconstructed as

*eǵh2óm. A significance test, as the name suggests, is employed to check whether lexical

resemblances among a group of languages are chance occurrences or not, henceforth

suggesting whether the given group of languages are genetically related or not.

The existing methods addressing these problems come with certain limitations listed as

2For understanding the notation of Proto-Indo-European please see the page explaining its phonology:
https://en.wikipedia.org/wiki/Proto-Indo-European_phonology.

https://en.wikipedia.org/wiki/Proto-Indo-European_phonology
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follows for each problem. These are addressed by the methods we propose in this thesis.

• In proto-language reconstruction, transfer learning, i.e., transfer of knowledge from

known data to unknown, has been unexplored since the existing methods tend to

train separately on a per-language family basis.

• In cognate detection, existing methods are mostly unsupervised. Thus, the labeled

cognacy information is under-utilized, which could potentially be useful.

• In significance testing, we observed that the existing multilateral permutation tests

may yield a false positive on an unrelated language group. Other existing tests rely

on proto-language reconstructions. However, historical linguists often disagree on

the reconstructed proto-forms.

This thesis proposes novel methods to address these challenges employing the repre-

sentational power of a transformer (Vaswani et al., 2017) in combination with ideas from

the developments in computational biology such as in protein fold prediction (Rao et al.,

2021; Jumper et al., 2021) or in significance testing of phylogenetic aspects (Huelsenbeck

and Bull, 1996; Huelsenbeck et al., 1996; Anisimova and Gascuel, 2006). The methods

thus proposed achieve state-of-the-art results on the above-stated problems. The aims of

this thesis are mentioned in the following section.

1.2 Aims and Objectives

The aims of the research conducted as part of this thesis are listed as follows:

• To develop computational tools for the three aforementioned problems, namely auto-

mated phonological reconstruction, automated cognate detection, and significance

testing of genetic relatedness, that can overcome the limitations of existing methods.

• To maintain an integration of biological insights throughout following the tradition

of computational historical linguistics.
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• To evaluate the performances of the proposed methods against those of existing

methods especially at low resource settings.

• To maintain multilingualism, i.e., to ensure language diversity through out the

experiments.

• To bear broader implications, especially by applying the significance tests on pro-

posed macro-families.

The contributions of this thesis fulfilling the above aims are summarized in the follow-

ing section.

1.3 Contributions

The contributions of this thesis are listed as follows:

• We introduce Cognate Transformer (CogTran) based on a protein language model

(Rao et al., 2021) that performs comparable to or better than the existing methods on

the tasks of proto-language reconstruction and cognate reflex prediction.

• We also demonstrate the advantage of pre-training CogTran on the task of masked

reflex prediction (akin to masked language modeling).

• We propose a supervised method named CogTran2, for automated cognate detection

that outperforms previous methods in the presence of little additional supervision.

Thus, it utilizes labeled data unlike the previous methods. The model can adapt

and perform well on new language families with fine-tuning on only a few concepts

(akin to few-shot learning).

• CogTran2 is also efficient in terms of time in comparison with previous methods,

since it consists of an end-to-end architecture that directly takes multiple sequences

as inputs to output cognate cluster linkages avoiding pairwise instantiations.

• We incorporate modules as part of CogTran2 to capture transitive property on output

cognate clusters which is responsible for better performance.
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• We propose a likelihood ratio test (LRT) to determine the genetic relatedness of a

group of languages based on the proportions of phonetically invariant sites.

• We find that LRT does not exhibit the problems of false positives nor does it require

proto-forms, which are the issues with previous methods.

• Finally, by application of LRT and other tests, we find supporting evidence for

sub-groupings Indo-European-Dravidian and Mayan-Mixe-Zoque of macro-families

Nostratic and Macro-Mayan respectively.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. Background knowledge on computational

historical linguistics is given in Chapter 2. The aims and objectives of our research are

mentioned in Chapter 3. Cognate Transformer is introduced in Chapter 4in the context of

proto-language reconstruction. Its adaptation to cognate detection by means of additional

modules supporting linkage prediction is described in Chapter 5. A significance test of

genetic relationship, namely the likelihood ratio test is described in Chapter 6, along with

its application to the testing of a few macro-families. The thesis is finally concluded in

Chapter 7 along with the discussions on potential future work.

1.5 Published Material

The core chapters of this thesis have been either published or yet to appear in conference

proceedings. The details are mentioned as follows:

• Chapter 4 is based on the work that was published in the proceedings of 2023

conference of the Empirical Methods in Natural Language Processing (Akavarapu

and Bhattacharya, 2023a).

• Chapter 5 is based on the work that was published in the proceedings of the 18th

conference of the European Chapter of the Association of Computational Linguistics

(Akavarapu and Bhattacharya, 2024a).
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• Chapter 6 is based on the work that was published in the proceedings of the 2024

conference of the North American Chapter of the Association of Computational

Linguistics: Human Language Technologies (Akavarapu and Bhattacharya, 2024b).

The work Akavarapu and Bhattacharya (2023b), although very different in application,

has been inspirational from a methodological point of view.



Chapter 2

Background on Computational

Historical Linguistics

This chapter gives an introduction to the field of computational historical linguistics and

mentions the major advances in this field. Before proceeding to it, the following section

gives a brief introduction to historical linguistics.

2.1 Historical Linguistics

Historical linguistics is the study of language change across time (Campbell, 2013). In

other words, it is the study of how a language evolves from its ancestral language, how

it differs in the course of evolution from its sister languages, how it gets shaped by the

influence of languages that come into its contact, how it gets diversified into various

dialects or even newer languages, and in many cases, how it may face extinction. Such

language change is studied in terms of phonetic, morphological, and syntactical changes.

The earliest systematic study of language change can be attributed to the Prakrit

grammarians (Subrahmanyam, 2011), a fact neglected by historical linguists. For instance

in the Prākr.ta Prakāśa of Vararuci, one can find several rules describing phonetic and

morphological changes from Sanskrit to various Prakrit dialects. The beginnings of

modern comparative historical linguistics, however, are attributed to a passage by Sir

Willian Jones, a philologist, delivered before the Asiatic Society at Calcutta in 1786, given



8

as follows:

“The Sanscrit language, whatever be its antiquity, is of a wonderful structure; more

perfect than the Greek, more copious than the Latin, and more exquisitely refined than

either, yet bearing to both of them a stronger affinity, both in the roots of verbs and the

forms of grammar, than could possibly have been produced by accident; so strong indeed,

that no philologer could examine them all three, without believing them to have sprung

from some common source, which, perhaps, no longer exists; there is a similar reason,

though not quite so forcible, for supposing that both the Gothic and the Celtic, though

blended with a very different idiom, had the same origin with the Sanscrit; and the old

Persian might be added to the same family.” (Jones, 1824)

In this passage, Jones narrates his findings where he observed Sanskrit to be similar

to Greek and Latin and concluded that they should have originated from the same source

language which is now referred to as Proto-Indo-European. This passage also gives a

glimpse of what is known as the comparative method, a central methodology of historical

linguistics that involves systematic comparisons of languages to inquire about a possible

genealogical relationship among them. This method is discussed in more detail as follows.

2.1.1 The Comparative Method

The comparative method aims to reconstruct the linguistic past through systematic com-

parisons of related languages. The steps involved are gathering cognates, identifying

regular sound correspondences, reconstruction of the proto-forms, reconstruction of mor-

phemes, and classification of the languages into language families/sub-families (Campbell,

2013). Languages in a language family are termed to be genetically related due to their

descendence from a common ancestral language. As an illustration, consider the pre-

position/prefix cognate words meaning ‘under’ namely Sanskrit upá, Ancient Greek hypó

and Latin sub where the meaning ‘under’ can be inferred from modern words such as

(Sanskrit) upādhyaks. a ‘vice-president’ or ‘deputy-chairman’, hypoglycemia ‘having low

blood sugar’ or submarine literally ‘under-sea’. Identification of sound correspondences, in

this example, refers to matching the consonants p-p-b or the root vowels u-y-u respectively
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in Sanskrit, Greek, and Latin. The corresponding ancestral proto-form is reconstructed

as *upó in Proto-Indo-European taking into account observed sound correspondences

from other cognate sets. An example of a language sub-group would be that of Romance

languages, the languages that derive from Vulgar Latin. Another example would be that of

Indo-Aryan consisting of languages that descend from (Vedic) Sanskrit and are concen-

trated in the Northern part of India. Finally, the evolution history of a language family is

represented by an evolutionary tree also referred to as a phylogeny.

The tasks of the comparative method are traditionally carried out manually involving

strenuous efforts. While it is still feasible for small to medium-sized language families, the

process becomes almost infeasible for large language families. For example, consider the

Austronesian family that consists of over a thousand languages geographically spanning

a vast area from Madagascar in Africa to Easter Island near Chile or up to the Hawaiian

islands. Further, each language in the family would have thousands of words. Hence,

it is desirable to have automated tools to assist historical linguistics in carrying out the

comparative method on such large language families.

Before talking about automating historical linguistics, it is worth noting the similarities

between language evolution and biological evolution described as follows.

2.1.2 Parallels with Evolutionary Biology

The existence of analogies between the evolutionary processes of languages and species

was noted by Darwin himself in The Descent of Man (1871). At a fundamental level, the

phonemic sequence across the lexica of a language is analogous to the DNA sequence

of an organism which is inherited by its descendants and which may change, i.e. mutate

at certain sites leading to diversification. The evolutionary history in both cases can be,

thus, represented in the form of a tree known as a phylogeny. These fundamental analogies

consequently give rise to several others, some of which are listed in Table 2.1 (Atkinson

and Gray, 2005; Campbell, 2013). For instance, consider horizontal gene transfer which

refers to the movement of genetic information across distantly related species (Keeling

and Palmer, 2008). In linguistics, on the other hand, one finds the analogous phenomenon
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Biological evolution Linguistic evolution

Discrete characters Lexicon, syntax, and phonology
Homologies Cognates
Mutation Sound change / Innovation
Natural selection Social selection
Cladogenesis Diversification
Horizontal gene transfer Borrowing / Language Contact
Plant hybrids Language Creoles
Correlated genotypes-phenotypes Correlated cultural terms
Geographic clines Dialects / Dialect chains
Fossils Relics / Archaisms
Extinction Language death

Table 2.1: Parallels between the evolutionary processes of living organisms and languages

of borrowing. For example, English word orange arrived by passing through various

languages ultimately from a Dravidian source related to Tamil nāram and Telugu nāriñja.

The presence of such analogies made it possible to apply directly many methods

developed for evolutionary biology to linguistic data such as those of computational

phylogenetics. This led to the significant emergence of computational historical linguistics,

which is discussed in the following section.

2.2 Computational Historical Linguistics

As discussed in §2.1.1, there is a need to automate the tasks of the comparative method

to assist the historical linguistics to facilitate easy handling of large language families

with thousands of languages. Computational historical linguistics, a relatively newer

field, aims to this end. Although this field existed in the previous century, it received a

significant boost since the early 2000s due to primarily importing ideas and techniques

from computational biology (Jäger, 2019). This progress owes to the presence of various

analogies between historical linguistics and evolutionary biology that have been just briefly

touched upon (§2.1.2). Computational historical linguistics shares insights and techniques

with three traditional disciplines, namely the comparative method, computational biology /

bioinformatics, and computational linguistics / natural language processing (Jäger, 2019).

These are elaborated further for each discipline as follows.
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(a) Multiple sequence alignment (b) Phylogenetic inference

(c) Neural machine translation (Luong et al.,
2015) (d) Multihead attention (Vaswani et al., 2017)

Figure 2.1: Computational historical linguistics borrows heavily from computational biology (top
row) and computational linguistics (bottom row). Multiple sequence alignment and phylogenetic
inference are performed in MEGA11 (Tamura et al., 2021)

2.2.1 Relation to the Comparative Method

Automating the tasks of the comparative method is the primary goal of this field. Some of

the central topics include automatic assessment of genetic relatedness, automatic cognate

detection, phylogenetic inference, and ancestral state reconstruction, i.e., proto-language

reconstruction (Jäger, 2019). These are verily the problems that are addressed in this thesis

respectively in chapters 6, 5 and 4. Refer to the examples from §2.1.1 for the notions of

cognates, genetic relatedness, phylogeny, and ancestral state reconstruction.

2.2.2 Relation to Computational Biology

Early algorithms inspired by computational biology in this field had to do with phonetic

alignment, for instance, dynamic programming based ALINE (Kondrak, 1999, 2000).

To this day, widely used phonetic alignment modules from LingPy library (List and

Forkel, 2021) make use of the pairwise molecular sequence alignment algorithms by
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Needleman and Wunsch (1970), and Smith and Waterman (1981). Sequence alignment is

fundamental to most problems such as cognate detection, proto-language reconstruction,

or phylogenetic inference. All the methods in this thesis indeed begin from multiple

sequence alignments. Another work that notably builds from evolutionary biology is

that of Bouchard-Côté et al. (2013), where a probabilistic model was proposed for proto-

language construction akin to ancestral state reconstruction of nucleotide or amino acid

sequences. Prominent import from computational biology apart from sequence alignment

has been that of phylogenetic inference (Jäger, 2019). It is not uncommon to date to

employ some phylogenetic software developed for molecular or trait data on cognacy data.

For instance in this thesis (Chapter 6), IQ-TREE (Nguyen et al., 2015), a phylogenetic

software, was used to compute maximum-likelihood trees as part of phylogenetic testing.

Another commonly used package is MrBayes (Huelsenbeck and Ronquist, 2001; Ronquist

et al., 2012) for Bayesian phylogenetic inference as applied in, for instance, Rama et al.

(2018) or Jäger (2019).

Other class of methods that are inspired by computational biology concern with signfi-

cance testing of genetic relatedness. Many are based on Fischer’s permutation test such

as that of Oswalt (1970) or Kessler (2001); Kessler and Lehtonen (2006) which are often

found in applications to biological sequences (Doerge and Churchill, 1996; Faith, 1991).

In this thesis (Chapter 6), likelihood ratio test was used for this problem. Likelihood

ratio test is often applied to test hypotheses on phylogenies as in case of Huelsenbeck and

Bull (1996); Huelsenbeck et al. (1996) and Anisimova and Gascuel (2006). Other tests of

genetic relatedness use brute-force probability computations on sound correspondences

and are not biologically inspired (Ringe, 1992, 1996). However, these methods have certain

theoretical problems with the probability computations as pointed out by Kessler (2001)

and are thus, considered obsolete.

2.2.3 Relation to Computational Linguistics

This field of computational historical linguistics is ultimately part of the broader com-

putational linguistics and thus, advances therein are passed on or inherited here. For a
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basic example, string comparison metrics like edit distances are used as a subroutine to

compute distances among lexicon in cognate detection task (List et al., 2017). Since

biological sequences are also ultimately strings, there is a significant overlap of methodol-

ogy in this respect as well. For instance, specific types of hidden Markov models found

in bioinformatics have been applied to the problems of cognate detection (Mackay and

Kondrak, 2005) and to the multiple sequence alignment problem (Bhargava and Kondrak,

2009). Application of statistical methods to proto-language reconstruction apart from that

of Bouchard-Côté et al. (2013) includes conditional random fields based on Latin word

reconstruction by Ciobanu and Dinu (2018). Recent methods include neural machine

translation-based proto-language reconstruction (Meloni et al., 2021) and ultimately with

the transformers (Celano, 2022; Kim et al., 2023). Some methodologies of computational

historical linguistics shared with computational biology and computational linguistics are

illustrated in Figure 2.1. In this thesis, we have employed transformer-based architectures

based on MSA Transformer (Rao et al., 2021) and AlphaFold2 (Jumper et al., 2021)

that were originally applied to amino acid sequences to the problems of proto-language

reconstruction (Chapter 4) and to that of cognate detection (Chapter 5). Here, it should

be emphasized although these models come from computational biology, the underlying

transformer architecture (Vaswani et al., 2017) or the underlying attention principle (Bah-

danau et al., 2014) ultimately arose in computational linguistics in the context of neural

machine translation.

This completes the brief introduction to both computational historical linguistics and

its current state. The existing approaches in this field, however, do come with limitations

and challenges, some of which are mentioned as follows.

2.2.4 Limitations of the Existing Methods

Here, we discuss the limitations of the existing methods concerning the problems addressed

in this thesis viz., proto-language reconstruction, cognate detection, and significance testing

of genetic relationship. These are elaborations of the ones listed in Chapter 1 (§1.1).

• In the problem of proto-language reconstruction, the existing methods are trained
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separately for different language families. Although every language family may have

a distinct set of sound changes defining its evolution, the possible sound changes

will still have great overlap across families. The reason behind this has to do with

the fact that most sound changes are universal partly due to the anatomy of speech

production. Thus, one may consider ‘transfering’ the common knowledge i.e., of

the sound changes learned from a group language families to others, which is not

observed with the existing methods.

• In the problem of cognate detection, the existing methods are mostly based on

unsupervised computation of certain word similarity measures that are further used

to cluster out cognates. However, there is a great amount of information on cognacy

labels across several language families for at least about a hundred meanings which

is not utilized. Thus, again one may consider a supervised model that can be trained

on such data and ideally, which should be adaptable to unseen families without

further significant efforts.

• In the problem of significance testing of genetic relatedness, existing methods that

are based on permutations of multilateral wordlists (Kessler, 2007), as shall be shown

in Chapter 6, exhibit false positives, i.e., may sometimes consider an unrelated group

of languages as related. Other methods, on the other hand, rely on the reconstructed

proto-forms (Ringe, 1996; Kassian et al., 2015) whose reconstructions are often a

point of contention among the historical linguists.

The methods proposed in this thesis aim to address these limitations and further advance

the state-of-the-art.

2.3 Summary

Thus, this chapter briefly introduces the subfield of computational historical linguistics

which lies at the intersection of three fields namely historical linguistics, computational

biology, and computational linguistics. The problems addressed in this thesis namely, proto-

language reconstruction, cognate detection, and significance testing of genetic relatedness
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have also been discussed along with the existing methods and their limitations. In this

thesis, we propose novel methods for these problems following the general theme of

computational historical linguistics, i.e., being situated at the triple confluence of historical

linguistics, computational biology, and computational linguistics, as it becomes evident

through the following chapters.





Chapter 3

Aims and Objectives

In this chapter, the aims and objectives of the research conducted as part of this thesis are

explained which have been briefly mentioned in Chapter 1 (§1.2). The common goals and

methodologies that knit together the subsequent chapters to advance the state-of-the-art

align well with those of computational historical linguistics as seen in the previous Chapter

2 namely, to automate the tasks of the comparative method employing insights and methods

from computational biology and computational linguistics. These are reiterated in this

chapter as it shall become evident through the aims and objectives listed as follows.

3.1 Development of Computational Tools

The primary aim of this thesis is to advance the state-of-the-art computational tools

that perform proto-language reconstruction, cognate detection, and significance testing of

genetic relatedness. To this end, the following objectives were set addressing the limitations

of the existing methods (see §2.2.4):

1. To develop a neural architecture, in our case, a transformer-based model for proto-

language reconstruction that can be trained on datasets from multiple language

families, thereby capable of transfer learning by design. In other words, a model,

which is once sufficiently ‘pre-trained’, can be fine-tuned easily on an unseen low-

resource language family’s data. To this end, we developed the Cognate Transformer

(CogTran) described in Chapter 4.
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2. To develop a supervised approach by adapting the above model to the problem of

cognate detection so that the labeled information can be utilized efficiently. Ideally,

the trained model should be adaptable to unseen families without further significant

fine-tuning. Since, the problem of cognate detection involves clustering of word

pairs (see §5.3), a supervised algorithm can be designed by viewing the problem as

a link prediction problem where links or edges should be defined to exist among

the members of the same cluster. To this end, we developed CogTran2 described in

Chapter 5.

3. To develop a significance test of genetic relatedness that can simultaneously be able

to test on multiple languages akin to multilateral permutation tests (§6.4.2), at the

same time avoid the false positives exhibited by the latter (§6.5). To this end, we

proposed a likelihood ratio test (LRT) described in Chapter 6.

3.2 Integration of Biological Insights

The thesis also aims to retain the tradition of adapting methods from computational biology

in computational historical linguistics, an aspect that has been emphasized in the previous

chapter. Objectives to achieve this are to make use of an aligned sequence structure of

cognates and to employ models that can utilize this inherent structure. To this end, all

three methods proposed in this thesis begin from multiple sequence alignment (MSA)

input, followed by sub-routines apt to such input. For instance, CogTran and CogTran2

adapt from a protein language model (Rao et al., 2021) and a protein structure predictor

(Jumper et al., 2021), while LRT depends on phylogenetic tree construction and is inspired

by hypothesis testing methods on phylogenetic trees of molecular phylogenetics.

3.3 Performance Evaluation at Low Resource Settings

There are several thousands of languages whose cognacy data is either unavailable or very

scarce. Hence, it is a basic requirement of the methods in this field to be able to work well
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in such low-resource settings. Thus, the thesis aims to evaluate the performance of the

proposed methods both qualitatively and quantitatively against that of the existing methods,

especially in low-resource settings. To this end, CogTran and CogTran2 both outperform

the existing methods across all test proportions, especially at low resource settings.

3.4 Mutilinguality

The common aim of any natural language processing algorithm should be to be able to

work well ideally on any language to serve all the languages of the world alike. Hence,

this thesis aims to apply the developed methods to the datasets from as many phonetically

diverse language families as possible. To this end, the datasets used in all the problems

reflect language diversity.

3.5 Broader Implications

Finally, this thesis aims to bear implications, some of which, perhaps important. Firstly,

in terms of providing better assistance to the historical linguists through refined methods.

Secondly and importantly, applications of significance tests (of Chapter 6) on potential

newer language families namely Macro-Mayan and Nostratic. Such statistical evidence

would provide impetus to look for finer linguistic similarities shared by the languages in

each group which in turn provide crucial insights into the past of the civilizations that

spoke these languages. To this end, significance tests applied on macro-families support

genetic relatedness of Mayan-Mixe-Zoquen and Indo-European-Dravidian.

The subsequent chapters present the methodologies that aim to fulfill the aims and

objectives set in this chapter.





Chapter 4

Cognate Transformer for Phonological

Reconstruction

Phonological reconstruction is one of the central problems in historical linguistics, as

described in Chapter 2, where a proto-word of an ancestral language is determined from

the observed cognate words of daughter languages. Computational approaches to historical

linguistics attempt to automate the task by learning models on available linguistic data.

Several ideas and techniques drawn from computational biology have been successfully

applied in the area of computational historical linguistics, as emphasized in Chapter 2.

Following these lines, we adapt MSA Transformer, a protein language model, to the

problem of automated phonological reconstruction in this chapter. MSA Transformer

trains on multiple sequence alignments as input and is, thus, apt for application on aligned

cognate words. We, hence, name our model as Cognate Transformer. We also apply the

model on another associated task, namely, cognate reflex prediction, where a reflex word

in a daughter language is predicted based on cognate words from other daughter languages.

Finally, we show that our model outperforms the existing models on both tasks, especially

when it is pre-trained on masked word prediction task. This chapter is based on Akavarapu

and Bhattacharya (2023a).
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4.1 Introduction

Phonological reconstruction of a word in an ancestral proto-language from the observed

cognate words, i.e., words of supposed common origin, in the descendant languages is

one of the central problems in historical linguistics, a discipline that studies diachronic

evolution of languages (Campbell, 2013). For example, the cognate words French enfant,

Spanish infantes and Italian infanti all trace to the proto-form infantes in Latin meaning

‘children’, which is an attested language in this case. In most cases, the proto-language is

not attested and has to be rather reconstructed. The process of arriving at such phonologi-

cal reconstruction usually involves multiple steps including gathering potential cognate

words, identifying systematic sound correspondences, and finally reconstructing the proto-

phonemes. This procedure is known as the ‘comparative method’ (Ringe and Eska, 2013),

which is traditionally carried out manually.

Several automated phonological reconstruction algorithms emerged in the last decade.

Some of these are drawn or inspired from computational biology, for example, Bouchard-

Côté et al. (2013). In general, computational historical linguistics draws techniques such

as sequence alignment and phylogenetic inference from computational biology, in addition

to the techniques known from historical linguistics and computational linguistics or natural

language processing (Jäger, 2019). On similar lines, we adapt the MSA transformer,

introduced in Rao et al. (2021) for modeling multiple sequence alignment (MSA) protein

sequences, for the problem of phonological reconstruction which takes as input a cognate

word set in the form of MSAs. Henceforth, we name the model introduced here as Cognate

Transformer.

We also apply our model on cognate reflex predicion task, where an unknown, i.e., a

masked reflex in a daughter language is to be predicted based on the attested reflexes from

other daughter languages (List et al., 2022b). For instance, in the previous example, if we

mask French enfant, the task would involve arriving at the word form correctly based on

Spanish infantes and Italian infanti. One can notice that this task can serve as a pre-training

objective for the proto-language reconstruction task described previously. Hence, we also
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pre-train the Cognate Transformer on the cognate reflex prediction task.

Further, most of the existing models are fitted on a per language family basis, i.e.,

on one dataset at a time consisting of a single language family. Thus, the utility of

either transfer learning or simultaneous fitting across several language families has not yet

been demonstrated. This is desirable even from the linguistic perspective since it is well

known that the sound changes are phonologically systematic and, thus, often similar sound

changes operate across different language families (Campbell, 2013). For instance, the

sound change involving palatalization of a velar consonant say /k/ > /tS/ can be observed in

the case of Latin caelum /kaIlUm/ to Italian cielo /tSE:lo/ as well as in the supposed cognate

pairs cold versus chill, which is a reminiscence of historical palatalization in Old English.1

Hence, owing to the presence of commonalities across language families in terms of sound

change phenomena, training models simultaneously across multiple language families

should be expected to yield better results than when training on a single language family

data at a time. This is well reflected in our present work.

4.1.1 Problem Statements

There are two tasks at hand as mentioned before, namely, cognate reflex prediction and

proto-language reconstruction.

An input instance of the cognate reflex prediction task consists of a bunch of cognate

words from one or more related languages with one language marked as unknown; the

expected output would be the cognate reflex in that particular language which is marked

unknown. An example from the Romance languages is:

Input: [French] Z @ n j E v K,

[Portuguese] ?,

[Italian] dZ i n e p r o

Output: [Portuguese] Z u n i p 1 R U

The input for the proto-language reconstruction task consists of cognate words in the

daughter languages and the expected output is the corresponding word in the ancestral

1For International Phonetic Alphabet (IPA) notation, see https://en.wikipedia.org/wiki/International_
Phonetic_Alphabet.

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
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(proto-) language. We model this as a special case of cognate reflex prediction problem

where the proto-language is always marked as unknown. For instance, in the following

example, Latin would be marked as unknown:

Input: [Latin] ?,

[French] Z @ n j E v K,

[Portuguese] Z u n i p 1 R U

Output: [Latin] j u: n I p E r U m

4.1.2 Contributions

Our contributions are summarized as follows. We have designed a new architecture,

Cognate Transformer, and have demonstrated its efficiency when applied to two problems,

namely, proto-language reconstruction and cognate reflex prediction, where it performs

comparable to the existing methods. We have further demonstrated the use of pretraining

in proto-language reconstruction, where the pre-trained Cognate Transformer outperforms

all the existing methods.

The rest of the chapter is organized as follows. Existing methodologies are outlined in

§4.2. The workflow of Cognate Transformer is elaborated in §4.3. Details of experimenta-

tion including dataset information, model hyperparameters, evaluation metrics, etc. are

mentioned in §4.4. Results along with discussions and error analysis are stated in §4.5.

4.2 Related Work

Several methods to date exist for proto-language reconstruction, as mentioned previously.

We mention a notable few. Bouchard-Côté et al. (2013) employs a probabilistic model

of sound change given the language family’s phylogeny, which is even able to perform

unsupervised reconstruction on Austronesian dataset. Ciobanu and Dinu (2018) performed

proto-word reconstruction on Romance dataset using conditional random fields (CRF)

followed by an ensemble of classifiers. Meloni et al. (2021) employ GRU-attention based

neural machine translation model (NMT) on Romance dataset. List et al. (2022a) presents

datasets of several families and employs SVM on trimmed alignments.
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The problem of cognate reflex prediction was part of SIGTYP 2022 shared task (List

et al., 2022b), where the winning team (Kirov et al., 2022) models it as an image inpainting

problem and employs a convolutional neural network (CNN). Other high performing

models include a transformer model by the same team, a support vector machine (SVM)

based baseline, and a Bayesian phylogenetic inference based model by Jäger (2022). Other

previous approaches include sequence-to-sequence LSTM with attention, i.e., standard

NMT based (Lewis et al., 2020) and a mixture of NMT experts based approach (Nishimura

et al., 2020).

The architecture of MSA transformer is part of Evoformer used in AlphaFold2 (Jumper

et al., 2021), a protein structure predictor. Pre-training of MSA transformer was demon-

strated by Rao et al. (2021). Handling MSAs as input by using 2D convolutions or GRUs

was demonstrated by Mirabello and Wallner (2019) and Kandathil et al. (2022).

4.3 Methodology

In this section, the overall workflow is described. The input phoneme sequences are first

aligned (§4.3.1), the resulting alignments are trimmed (§4.3.2), and then finally passed

into the MSA transformer with token classification head (§4.3.3). In the training phase,

the output sequence is also aligned while in the testing phase, trimming is not performed.

The first two steps are the same as described in List et al. (2022a) and are briefly described

next.

4.3.1 Multiple Sequence Alignment

The phenomenon of sound change in spoken languages and genetic mutations are similar.

As a result, multiple sequence alignment and the methods surrounding it are naturally

relevant here as much as they are in biology. The phonemes of each language in a single

cognate set are aligned based on the sound classes to which they belong. An example of

an alignment is given in Table 4.1.

We use the implementation imported from the library lingpy (List and Forkel, 2021)
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[French] Z @ n j E v - K - -
[Italian] dZ i n - e p - r o -
[Spanish] x u n - i p e R o -
[Latin] j u: n - I p E r U m

Table 4.1: Aligned phoneme sequences

[French] Z @ n j.E v - K -
[Italian] dZ i n e p - r o
[Spanish] x u n i p e R o
[Latin] ? ? ? ? ? ? ? ?
[Latin] j u: n I p E r U.m

Table 4.2: Trimmed input and output alignments

which uses the sound-class-based phonetic alignment described in List (2012b). In this

algorithm, the weights in pairwise alignments following Needleman and Wunsch (1970)

are defined based on the sound classes into which the phonemes fall. Multiple sequences

are aligned progressively following the tree determined by UPGMA (Sokal and Michener,

1975).

4.3.2 Trimming Alignments

In the example given in Table 4.1, one can observe that during testing, the final gap

(hyphen) in the input languages (i.e., excluding Latin) will not be present. Since the task is

essentially a token classification, the model will not predict the final token ‘m’ of Latin.

To avoid this, alignments are trimmed as illustrated in Table 4.2 for the same example.

This problem is discussed in detail in (List et al., 2022a) and the solution presented

there has been adopted here. In particular, given the sequences to be trimmed, if in a

site all tokens are gaps except in one language, then that phoneme is prepended to the

following phoneme with a separator and that specific site is removed. For the last site, the

lone phoneme is appended to the penultimate site. Following (List et al., 2022a), trimming

is skipped for testing as it has been observed to cause a decrease in performance. The

reason for this is mentioned in (Blum and List, 2023). Briefly stating it, gaps in daughter

languages can point to a potential phoneme in the proto-language. While training however,
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Figure 4.1: A single layer of MSA Transformer.

they are redundant and can be trimmed since proto-language is part of alignment.

4.3.3 MSA Transformer

The MSA Transformer, proposed in (Rao et al., 2021), handles two-dimensional inputs

with separate row and column attentions (each with multiple heads) in contrast with the

usual attention heads found in standard transformer architectures (Vaswani et al., 2017). It

uses learned positional embeddings only across rows since a group of rows does not make

up any sequential data. The outputs of row attentions and column attentions are summed

up before passing into a fully connected linear layer (see Figure 4.1). MSA Transformer,

despite its name, is not an encoder-decoder transformer but rather only an encoder like

BERT (Devlin et al., 2018), except with the ability to handle 2D input (see Figure 4.2).

For more information on row and column attentions see Appendix A.

4.3.4 Workflow

The aligned input sequences thus trimmed are passed into MSA Transformer as tokens.

A single input instance to an MSA Transformer is a 2D array of tokens. The overall

architecture of the Cognate Transformer is illustrated in Figure 4.2. Due to trimming,

several phonemes can be joined together as one token. Hence, with trimming the total

number of tokens or the vocabulary size can be above 1000 or even 2000 based on the

training dataset, while without trimming the vocabulary size would essentially be close to

the total number of phonemes possible which would be only a few hundreds.



28

Figure 4.2: Cognate Transformer architecture: an input instance is passed into an MSA transformer,
where the resultant embeddings are summed and normalized along columns, which are then finally
passed into a classifier.

Meloni et al. (2021) incorporate the information regarding the language of a word

through a language embedding concatenated to the character/token embedding. We instead

treat language information as a separate token attached to the beginning of the phoneme

sequence. Use of language embeddings with transformer based models was initially

present in the multi-language model XLM (Conneau and Lample, 2019). It was however

discontinued in the later versions(Conneau et al., 2020). We similarly have decided to

remove the language embedding and instead use a special token denoting language as it

is less complex in implementation. Other special tokens used include the usual [CLS] to

mark the beginning, [SEP] to mark the ending of a word, [PAD] for padding, and [MASK]

to replace ‘?’ in the unknown word (see Table 4.2) or the word to be predicted. Thus, the

input batch padded appropriately is passed on to the MSA Transformer.

The normal output of an MSA Transformer is a 2D array of embeddings per instance.

To this, we add an addition layer that sums over columns to give a 1D array of embeddings
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per instance as output. In other words, if the overall dimensions of the MSA transformer

output were (batch_size × num_languages × msa_length × hidden_size) then, for

our case, the final dimensions after summing up along columns are (batch_size ×

msa_length × hidden_size). To this, we add a normalizer layer followed by a classifier,

i.e., a linear layer followed by cross-entropy loss. This is illustrated in Figure 4.2.

4.3.5 Pre-training

The described model can support pre-training in a form similar to masked language

modeling where a word from a cognate set is entirely masked but the language token

remains unmasked corresponding to the language that is to be predicted. In other words,

pre-training is the same as training for cognate prediction task. For proto-language

reconstruction, however, pre-training can be done. As a result, we pre-train Cognate

Transfomer on the data of the cognate reflex prediction task. It is further fine-tuned on the

proto-language reconstruction task.

We have used the publicly available implementation of MSA transformer by the

authors2, on top of which we added the layers required for the Cognate Transformer

architecture. We have used tokenization, training, and related modules from HuggingFace

library (Wolf et al., 2020). The entire code is made publicly available3.

4.4 Experimental Setup

4.4.1 Datasets

We use the SIGTYP 2022 dataset (List et al., 2022b) for the cognate reflex prediction task.

It consists of two different subsets, namely, training and surprise, i.e., evaluation data from

several language families. The statistics for this dataset is provided in Table 4.3. Surprise

data was divided into different test proportions (size of test data to that of training) of 0.1,

0.2, 0.3, 0.4, and 0.5 for evaluation. Among these, we only report for the test proportions

2https://github.com/facebookresearch/esm
3https://github.com/mahesh-ak/CognateTransformer

https://github.com/facebookresearch/esm
https://github.com/mahesh-ak/CognateTransformer
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Family Languages Words Cognates
Training data
Tshanglic 8 2063 403
Bai 9 5773 969
Sino-Tibetan 7 1426 248
Sui 16 10139 1048
Uto-Aztecan 9 771 118
Afro-Asiatic 19 2583 340
Dogon 16 4405 971
Japonic 10 1802 278
Indo-European 4 1320 512
Burmish 7 2501 576

32783 5463
Surprise data
Atlantic-Congo 10 1218 388
Hui 19 9750 518
Chapacuran 10 939 187
Western Kho-Bwa 8 5214 915
Berta 4 600 204
Palaung 16 1911 196
Burmish 9 2202 467
Indo-European 5 565 212
Karen 8 2363 379
Bai 10 4356 658

29118 4124

Table 4.3: Dataset for reflex prediction task

0.1, 0.3, and 0.5. The division into proportions is across different cognate sets and not

within each. In other words, a cognate set in entirety would fall into either train or test

data.

For the proto-language reconstruction task, the dataset provided by List et al. (2022a)

is used. It consists of data from 6 language families, namely, Bai, Burmish, Karen,

Lalo, Purus, and Romance whose statistics are listed in Table 4.4. This is divided into

test proportion 0.1 by List et al. (2022a). We further test for proportions 0.5 and 0.8,

where the latter proportion reflects a low-resource setting. For pre-training the Cognate

Transformer for this task, we use the entire training data of both the tasks with words from

proto-languages removed.
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Family Languages Words Cognates
Bai 10 3866 459
Burmish 9 1711 269
Karen 11 3231 365
Lalo (Yi) 8 7815 1251
Purus 4 693 199
Romance 6 18806 4147

36122 6690

Table 4.4: Dataset for Proto-language reconstruction task

4.4.2 Model Hyperparameters

We have tested two variations of the proposed Cognate Transformer architecture, namely

CogTran-tiny and CogTran-small. CogTran-tiny has hidden size 128, intermediate size

256, 2 attention heads, and 2 layers with overall 1 million parameters. CogTran-small has

hidden size 256, intermediate size 512, 4 attention heads, and 4 layers with overall 4.4

million parameters. Both models have a vocabulary size of about 2,300.

For pre-training, only CogTran-small is used, since it consistently outperforms CogTran-

tiny. The training is carried out with 48 epochs for pre-training, with 9 epochs for finetuning

in the proto-language reconstruction task, 24 epochs for non-pre-trained in the same task,

and 32 epochs for cognate-reflex prediction task, using Adam optimizer with weight decay

(Loshchilov and Hutter, 2017) as implemented in HuggingFace transformers library (Wolf

et al., 2020) with learning rate 1e-3 and batch size of 64. For finetuning the pre-trained

model, the batch size is 48.

4.4.3 Evaluation

We use the metrics average edit distance (ED), average normalized edit distance (NED),

and B-Cubed F1 score (BC) following List et al. (2022a) for evaluating the models. Edit

distance is the well-known Levenshtein distance (Levenshtein, 1965), both with or without

normalization by the lengths of the source and target strings being compared. B-Cubed

F1 score (Amigó et al., 2009) was applied to phoneme sequences by List (2019b), where

similarity is measured between aligned predicted and gold sequences. B-Cubed F1 score
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measures the similarity in the structures and, hence, in the presence of systematic errors,

carries less penalty than edit distance (See Appendix C for details on BCubed metrics.

As (normalized) edit distance is a distance measure, the lower the distance, the better the

model. On the other hand, for B-Cubed F1 it is opposite, i.e., the higher the score, the

better the model. We import the metric functions from the LingRex package (List and

Forkel, 2022).

4.4.4 Methods for Comparison

The results of the cognate reflex prediction task are compared directly against those of

the top performing model in the SIGTYP 2022 task – Kirov et al. (2022). Here, direct

comparison between the models is possible since the datasets including the test divisions

are the same.

However, for the proto-language reconstruction task, the previous state-of-the-art model

(Meloni et al., 2021) reports only on the Romance dataset with test proportion 0.12 and the

baseline SVM model (List et al., 2022a) with additional features such as position, prosodic

structure, etc., marked as SVM+PosStr is tested only with test proportion 0.1. However,

the code is openly provided for the SVM-based model and, hence, results were generated

for other test proportions 0.5 and 0.8 as well.

To compare the results of proto-language reconstruction with the NMT model given

by Meloni et al. (2021) for which the code is not publicly available, we build a best-effort

appropriate model identical to the one described there with 128 units Bidirectional GRU

encoder followed by same sized GRU decoder followed by attention and linear layer

with dimension 256 followed by a classifier. The input is encoded as a 96-dimensional

embedding for each token concatenated with 32-dimensional language embedding. The

training parameters are the same as previously stated in §4.4.2 except that the number

of epochs trained is 32 and the batch size is 16. For the Romance data part, the results

obtained are ED 1.287 and NED 0.157 whereas those reported by Meloni et al. (2021) for

Romance data (IPA) with almost similar test proportion (0.12) are ED 1.331 and NED

0.119. Thus, the edit distances match whereas normalized ones do not. We speculate that
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Test proportion Method ED↓ NED↓ BC↑

0.1
CogTran-tiny 1.0901 0.2997 0.7521
CogTran-small 0.8966 0.2421 0.7823
Mockingbird - Inpaint (Kirov et al., 2022) 0.9201 0.2431 0.7673

0.3
CogTran-tiny 1.3223 0.3497 0.6612
CogTran-small 1.1235 0.2919 0.6954
Mockingbird - Inpaint (Kirov et al., 2022) 1.1762 0.2899 0.6717

0.5
CogTran-tiny 1.4521 0.3873 0.6257
CogTran-small 1.2786 0.3332 0.6477
Mockingbird - Inpaint (Kirov et al., 2022) 1.4170 0.3518 0.6050

Table 4.5: Cognate reflex prediction results.

the NED reported by Meloni et al. (2021) could be erroneous due to possible inclusion of

delimiter while calculating the length of the strings, since by (mis)considering delimiters,

we obtain a similar NED 0.121 for the model we train. This can be confirmed by observing

the ED-to-NED proportions of the corresponding scores obtained by the SVM-based

model for the Romance dataset: ED 1.579 and NED 0.190, which we generate using the

code made available by List et al. (2022a). Alternatively, the disparity in NED could also

be attributed to differences in the sizes of the dataset used for training. However, it is

unclear how agreement in ED score could have been then possible. Due to absence of

both appropriate model and data, we assume that the NMT model we have built is a good

reproduction of that built by Meloni et al. (2021).

All models compared in the proto-language reconstruction task are 10-fold cross-

validated.

4.5 Results

In this section, we present and discuss in detail the results of our Cognate Transformer and

other state-of-the-art models on the two tasks.

4.5.1 Cognate Reflex Prediction

The results of the cognate reflex prediction task are summarized in Table 4.5. The edit

distance (ED), normalized edit distance (NED), and B-Cubed F1 (BC) scores are provided
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Test proportion Method ED↓ NED↓ BC↑

0.1

CogTran-tiny 0.8081 0.1760 0.7946
CogTran-small 0.7772 0.1683 0.7968
CogTran-small Pretrained 0.7459 0.1595 0.8081
SVM + PosStr (List et al., 2022a) 0.7612 0.1633 0.8080
NMT GRU + Attn. (Meloni et al., 2021) 1.0296 0.1909 0.7560

0.5

CogTran-tiny 0.9013 0.1966 0.7279
CogTran-small 0.8750 0.1899 0.7330
CogTran-small Pretrained 0.8177 0.1760 0.7534
SVM + PosStr (List et al., 2022a) 0.8455 0.1839 0.7425
NMT GRU + Attn. (Meloni et al., 2021) 1.2585 0.2362 0.6733

0.8

CogTran-tiny 1.1043 0.2455 0.6781
CogTran-small 1.0697 0.2359 0.6817
CogTran-small Pretrained 0.9754 0.2142 0.7132
SVM + PosStr (List et al., 2022a) 1.0630 0.2391 0.6800
NMT GRU + Attn. (Meloni et al., 2021) 1.8640 0.3546 0.5538

Table 4.6: Proto-language reconstruction results.

Family \Test prop. 0.1 0.3 0.5
Atlantic-Congo 0.8192 0.7245 0.7027
Hui 0.7933 0.7418 0.7143
Chapacuran 0.6624 0.5847 0.5335
Western Kho-Bwa 0.8572 0.8065 0.7161
Berta 0.7681 0.6758 0.6197
Palaung 0.8815 0.7401 0.6863
Burmish 0.6531 0.5931 0.5261
Indo-European 0.5012 0.3915 0.3637
Karen 0.8869 0.7914 0.7504
Bai 0.8047 0.7029 0.6444

Table 4.7: Family wise B-Cubed F scores for model CogTran-small against test proportions on
reflex prediction task

for Cognate Transformer across the test proportions 0.1, 0.3, and 0.5 along with the

best performing model of the SIGTYP 2022 (List et al., 2022b) task, namely, the CNN

inpainting (Kirov et al., 2022). CogTran-small consistently outperforms the previous

best models across all test proportions. In particular, the difference in scores between

Cognate transformer and the CNN inpainting model becomes prominent with increasing

test proportion. Hence, it can be concluded here that Cognate Transformer is more robust

than other models. The language family wise results for the best performing model,

CogTran-small, are provided in Table 4.7.
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Family \Test prop. 0.1 0.5 0.8
Romance 0.7765 0.7570 0.7353
Bai 0.7465 0.7108 0.6748
Burmish 0.8426 0.7250 0.6460
Karen 0.8666 0.7845 0.7373
Lalo 0.7221 0.6769 0.6416
Purus 0.8941 0.8662 0.8440

Table 4.8: Family wise B-Cubed F scores for model CogTran-small Pretrained against test propor-
tions on proto-language reconstruction task

Test prop. ED NED BCF
0.1 0.065 0.015 0.018
0.5 0.028 0.006 0.008
0.8 0.027 0.006 0.007

Table 4.9: Standard Deviations for model CogTran-small Pretrained

4.5.2 Proto-Language Reconstruction

The results of the proto-language reconstruction task are summarized in Table 4.6 with the

same evaluation metrics along with comparisons with other previously high performing

models, namely, SVM with extra features by List et al. (2022a) and NMT (GRU-attention)

based by Meloni et al. (2021) for the test proportions 0.1, 0.5, and 0.8. Previously, there

were no comparisons between SVM-based and NMT-based models. Here, we find that

the SVM-based model performs consistently better than the NMT-based model. In other

words, the GRU-Attention-based NMT model does not appear to scale well in harder

situations, i.e., for higher test proportions when compared with the other models. While

CogTran-small achieves results similar to the SVM-based models, pre-training makes

a difference. The pre-trained Cognate transformer outperforms all the other models in

all test proportions. Although the increase in the proportion 0.1 is not much significant,

paired t-test between best performing model and the next best model i.e. CogTran-small

Pretrained and SVM-based yield significance of p < 0.01 in low-resource proportions

i.e. 0.5 and 0.8 . The language family wise results and standard deviations for the best

performing model, CogTran-small Pretrained are provided respectively in Table 4.8 and

Table 4.9. Note that SVM-based model was also part of SIGTYP 2022 (List et al., 2022b)

where it lags well behind CNN inpainting model. Hence, cognate transformer generalizes
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Figure 4.3: Top-30 most common sound exchange errors out of over 400 errors for pre-trained
CogTran-small on proto-language reconstruction task with test proportions 0.1 (top) and 0.8
(bottom).

well across tasks hence gains from architecture are obvious.

4.5.3 Error Analysis

To analyze errors, we consider the pre-trained and finetuned CogTran-small on the proto-

language reconstruction task for the easiest and hardest test proportions 0.1 and 0.8 over

fixed data (without cross-validation). Figure 4.3 shows the 30 most common sound

exchange errors by the models. An example of sound exchange error, u/a means either ‘a’

is predicted in place of ‘u’ or vice versa. To make this plot, we first gather the frequencies

of sound exchanges for the various language families in data by comparing the aligned

predicted and gold reconstructions. These frequencies are normalized for each proto-

language or language family and finally combined and normalized again. Normalization at

the language family level is important since few language families show more tendencies

for certain types of errors than others. Since data is not equally available from all families,

a language family with more data influences the outcome. For example, among the datasets

used for the task, the Romance dataset comprises half of them. We observe that Romance

data shows more vowel-length-related errors as also observed by Meloni et al. (2021)

and, thus, proportion of such errors is inflated. Hence, normalization is carried out at the
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language family level to prevent such biases. We normalize per family by dividing the

frequency of a particular error type in a family by the total number of errors in that family.

Normalized frequencies thus obtained per error type per family are combined by adding

up across families and then normalized again.

The most frequent sound exchange errors are plotted in Figure 4.3 which make up

respectively, for test proportions 0.1 and 0.8, about 71% and 60% of total such errors.

One can observe from the plot that the most common vowel errors are the exchange of

short vowels /u/ and /i/ with a neutral vowel /a/, vowel raising-lowering, i.e., exchange of

/i/ ∼ /e/, /u/ ∼ /o/, diphthong-monophthong exchanges /ai/ ∼ /i/, tense-laxed exchanges,

i.e., /E/ ∼ /e/ and /O/ ∼ /o/. Vowel length confusions, i.e., /i:/ ∼ /I/, /e:/ ∼ /e/, /a:/ ∼

/a/, /o:/ ∼ /O/, /u:/ ∼ /U/ also make up a significant portion. Overall, vowel/consonant

length errors make up to about 10% sound exchange errors each in both cases. Among

consonant errors, one can observe voiced-unvoiced or glottalized-unglottalized consonant

exchanges like /p/ ∼ /b/, /Pk/ ∼ /g/, aspiration errors, i.e., /ph/ ∼ /p/, /th/ ∼ /t/, change of

place of articulation like /N/ ∼ /n/, /s/ ∼ /h/, etc. Tone exchange errors like /1/ ∼ /3/ also

exist which contribute to about 10% in each of the cases. Affricatives exchange error /tS/

∼ /ts/ appears prominently in the case of test proportion 0.1. Overall, these are the most

general kinds of errors; however, exact types of errors are observed to be dependent on the

language family. Hence, although most general ones are universally observed, significant

differences can be expected based on the particular datasets or perhaps due to learning of

different sound correspondences in different runs by the network.

4.5.4 Zero-shot Attempt

Previously, we discussed the results of proto-language reconstruction for various test

proportions. Among these, the highest proportion considered, i.e., 0.8, can be thought of as

a few-shot learning case, since for some of the language families like Purus and Burmish,

the number of training instances, i.e., cognate sets is less than 50. We next consider the

pre-trained model for the same task without any finetuning; in other words, we consider

the zero-shot case. The scores achieved by such a model are 2.6477 ED, 0.5758 NED,
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and 0.5499 BC, which means that more than 40% of a word on average in generated

reconstructions are correct. An example input instance and its corresponding output and

gold data from the Romance dataset:

Input: [Latin] ?,

[French] p E K s p i k y i t e,

[Italian] p e r s p i k u i t a

Output: [French] p e r s p i k y i t a

Gold: [Latin] p E r s p I k U I t a:.t.E.m

In the above example, the output language token is incorrect. Since the proto-languages

(in this case, Latin) have been excluded entirely in pre-training, this can be expected. One

can also observe that the output word completely agrees with neither Italian nor French,

although the inclination is more toward the former (with a ED of 1). A similar observation

was made by Meloni et al. (2021) where the network attended most to Italian since it is

conservative than most other Romance languages.

4.5.5 Learned Sound Changes

Here, we consider the finetuned pre-trained model on the proto-language reconstruction

task to observe the learned sound changes by the network in the hardest scenario, i.e.,

with test proportion 0.8. The following example reveals an instance where palatalization

appearing in Romance languages is correctly reconstructed to a non-palatal consonant:

Input: [Latin] ?,

[French] s j E,

[Spanish] 8 j e

Output: [Latin] k E

We now consider metathesis, a non-trivial complex sound change where positions of

phonemes are interchanged. The following example is from the training set which the

network learns correctly and demonstrates the metathesis -bil- > -ble-.
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Input: [Latin] ?,

[French] Ẽ p E K s E p t i b l,

[Spanish] i m p e R 8 e p: t i B l e

Output: [Latin] I m p E r k E p t I b I l E m

Following is an example from the test set where the model confuses a complex metathe-

sis pattern occurring in Hispano-Romance, -bil- > -lb-.

Input: [Latin] ?,

[Spanish] s i l B a R,

[French] s y b l e,

[Portuguese] s i l v a ô

Output: [Latin] s y b l w a: r E

Gold: [Latin] s i: b I l a: r E

Even the model finetuned on test proportion 0.1 does not get this example correct. Its

output is

Output: [Latin] s y b l O a: r E

Hence, metathesis can be seen as a hard sound change to be learned by this model. This

is not surprising since metathesis or site exchange does not naturally fit into the sequence

alignment approach which fundamentally only models insertions and deletions at any

site. Thus, it is worthwhile to investigate more on this aspect by training the network on

language families that exhibit systematic metathesis to understand its behavior.

4.6 Summary

In this chapter, we adapted MSA transformer for two phonological reconstruction tasks,

namely, cognate reflex prediction and proto-language reconstruction. Our novel architec-

ture, called Cognate Transformer, performs either comparable to or better than the previous

methods across various test-train proportions consistently. Specifically, the pre-trained

model outperforms the previous methods by a significant margin even at high test-train

proportions, i.e., with very less trainable data reflecting a more realistic scenario.

To the best of our knowledge, this work demonstrates the utility of transfer learning
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when applied to historical linguistics for the first time. In this chapter, the data is in IPA

representation, but this is not necessary as long as words can be aligned with properly

defined sound classes in the respective orthographic representations. This may not be an

easy task when the languages are phonologically diverse. A fixed transliteration scheme

may be used in such cases if feasible. Thus, relaxing the IPA input constraint can increase

the amount of trainable data and pre-training with more data would most likely improve

the performance of not only the problem of automated phonological reconstruction but

can be demonstrated in the future for an important related task, namely automated cognate

word detection. Further, more standard ways of pre-training such as masking only a couple

of tokens across all languages instead of a complete word of a single language can be

adapted in future.

Limitations

In the task of proto-language reconstruction, it can be seen from the results (Table 4.6)

that CogTran-small i.e. the plain Cognate Transformer model without pre-training slightly

underperforms the SVM-based model at low test proportions. Only the pre-trained model

performs well in this scenario.

Further, it has already been mentioned in §4.5.5 that metathesis sound change is not

being captured correctly by the network which requires further investigation. Overall,

very few languages and language families are included in the data used. Thus, it is

desirable to create such datasets for other languages with at least cognacy information

to improve the unsupervised training firstly, which can be then employed in supervised

training successfully with fewer training examples.



Chapter 5

Cognate Detection as a Link Prediction

Task with Cognate Transformer

Identification of cognates across related languages, as described in Chapter 2, is one of the

primary problems in historical linguistics. Automated cognate identification is helpful for

several downstream tasks including identifying sound correspondences, proto-language

reconstruction, phylogenetic classification, etc. Previous state-of-the-art methods for

cognate identification are mostly based on distributions of phonemes computed across

multilingual wordlists and make little use of the cognacy labels that define links among

cognate clusters. In this chapter, we present a transformer-based architecture inspired

by computational biology for the task of automated cognate detection. Beyond a certain

amount of supervision, this method performs better than the existing methods, and shows

steady improvement with further increase in supervision, thereby proving the efficacy of

utilizing the labeled information. We also demonstrate that accepting multiple sequence

alignments as input and having an end-to-end architecture with link prediction head saves

much computation time while simultaneously yielding superior performance. This chapter

is based on Akavarapu and Bhattacharya (2024a).
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5.1 Introduction

Words in genetically related languages with same descendance from a common ancestral

language are termed as cognates. For example, Sanskrit bhava and English be are cognates

reconstructed as *bhewH- in ancestral Proto-Indo-European. Within historical linguistics,

assembling potential cognates forms an essential step in the comparative method to proceed

to further stages such as formulation of sound laws, reconstruction of proto-language,

phylogenetic reconstruction, etc. (Campbell, 2013). Cognate identification has been

traditionally carried out by tedious manual cross-comparisons of lexica across several

concepts or meanings; this often requires sufficient linguistic expertise in the languages

that are being compared. Automated cognate detection attempts to alleviate manual labor

and, thus, assists a historical linguist to quickly produce high-quality etymologies required

for downstream tasks.

Over the past decade, several methods for automated cognate detection, mostly using

sequence alignment and other techniques inspired by bioinformatics and evolutionary

biology (List et al., 2017), have appeared. The best-performing methods primarily depend

on similarity scores computed from distributions of phonemes in multilingual wordlists

(Rama and List, 2019) and make little or no use of the cognacy labels except for a clustering

task at the end. In this chapter, we advocate for a supervised learning scenario that utilizes

the labeled information to the fullest. We demonstrate that such a scenario combined

with the representational power of an appropriate deep neural network architecture can

outperform previous methods above a certain amount of supervision. We also demonstrate

that such a model is also capable of transfer learning. In other words, once trained on some

data, it can perform well on any dataset unseen so far with little additional supervision.

The typical procedure followed by the state-of-the-art methods for this problem is as

follows. In each language family, attested words from all languages that have the same

meaning, i.e., concept, are clustered based on the pairwise similarity measures computed

by the respective procedure. We propose a different approach where instead of clustering

based on pairwise similarity we directly take input a multiple sequence alignment (MSA)
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of words of the same concept and predict linkage via an end-to-end architecture. This

approach proves to be much better in performance and much faster than clustering from

independent pairwise similarity measures.

Many of the algorithms in computational historical linguistics are heavily drawn or

inspired by computational biology. Continuing the trend, we adopt Cognate Transformer

(Akavarapu and Bhattacharya, 2023a), which yielded state-of-the-art performance in

automated phonological reconstruction task, as the base architecture. Cognate Transformer

was adapted from MSA Transformer (Rao et al., 2021), a protein language model that excels

in contact predictions. We additionally append to this architecture layers consisting of

triangular multiplication and triangular attention modules inspired by Alphafold2 (Jumper

et al., 2021), the state-of-the-art protein structure predictor, where the modules roughly

capture triangle inequalities among the distances between amino acid residues. For our task,

we applied these modules for capturing transitivity property among linkages in cognate

clusters. We find that the addition of this particular module has a significant share in the

performance of the overall architecture.

Our key contributions are as follows:

1. Firstly, we propose a supervised method for automated cognate detection that out-

performs existing methods with sufficient supervision with likely improvement

on further supervision, thus utilizing the labeled data much more efficiently than

previous models while also demonstrating few-concept (akin to few-shot) learning.

2. Secondly, our method consists of an end-to-end architecture that avoids independent

pairwise computations by accepting MSA as input and directly predicting cluster

linkages, which proves to be more efficient in terms of both performance and time

than a pairwise approach.

3. Thirdly, we incorporate into the architecture of Cognate Transformer additional

modules to capture transitivity property among cognate cluster linkages which has a

positive effect on overall performance.

The rest of the chapter is organized as follows. Related work is mentioned in §5.2. The
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problem statement is elaborated in §5.3. The methodology is described in §5.4. The details

of the experimental setup including the datasets used, previous baselines, and evaluation

measures are described in §5.5. The results of experiments and ablation studies along with

error analyses and discussions are given in §5.6. Finally, the article is concluded in §5.7.

5.2 Related Work

Computational historical linguistics is a young field that emerged over the past two decades.

Notable works that lead to significant progress in automatic cognate detection are as follows.

Consonant Class Method of Turchin et al. (2010) deems two words as cognate if the first

two consonants fall under the same consonant class. In Sound-Class-based phonetic

alignment (SCA) of List (2010), pairwise phoneme sequences are aligned and scored

for similarity using sound classes that extend consonant classes. LexStat (List, 2012a)

aligned and scored pairwise sequences using language phonemic-specific distributions

combined with SCA-based scores. The pairwise similarities thus obtained are clustered

using UPGMA (Sokal and Michener, 1958). The previous state-of-the-art results are

attributed to LexStat combined with Infomap clustering (List et al., 2017). Equivalent

performance was also reported in Rama (2018) using Chinese Restaurant Clustering. An

expectation-maximization method over pairwise phonemic distributions is also found to

yield similar performance (MacSween and Caines, 2020). Information-weighted similarity

measure was proposed by (Dellert, 2018) which reported a slight increase in evaluation

scores over LexStat, albeit tested only on one dataset.

Supervised algorithms include the Siamese-CNN-based model by Rama (2016) which

performs binary classification on a given pair of words. Jäger et al. (2017) employ SVM on

top of LexStat and Point-wise Mutual Information (PMI) measures that yield performance

similar to that of LexStat-Infomap.

There exist several other works often performing supervised pairwise classification and

incorporating multilingual language models such as those of Kanojia et al. (2020, 2021)

and Nath et al. (2022). Despite brilliantly employing pre-trained multilingual language

models, these cannot be applied for ancient languages like Ancient Greek, Gothic, etc.,
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or highly low-resource and endangered languages like those of the Americas where one

does find wordlists of sufficient size but not enough text to pre-train language models

for sake of performing historical linguistic tasks computationally. Another related task is

that of cognate and derivate detection (Rani et al., 2023), which is essentially a word-pair

classification task. These tasks have a slightly different setup than the problem at hand

since the clustering step is not involved.

Cognate Transformer (Akavarapu and Bhattacharya, 2023a), described in the previous

chapter, that achieves the best performance on phonological reconstruction tasks employs

a transformer-like architecture with row-wise and column-wise attentions to efficiently

operate over MSAs. This model was adapted from an evolutionary biological model called

MSA Transformer (Rao et al., 2021) which acts on protein sequences. Vanilla Transformer

architecture was also used in Kim et al. (2023) for proto-language reconstruction. Al-

though we employ Cognate Transformer, it should be well noted that the problem we are

addressing is that of cognate detection which is quite different from that of proto-language

reconstruction. The aforementioned transformer-based models address the latter problem.

5.3 Automated Cognate Detection

The automated cognate detection problem statement is described here as follows. The gold

data for a language family F , comprising of related languages L1, L2, . . . ∈ F , consists of

words over several concepts, i.e., meanings, say M1,M2, . . . , etc. Each word is a sequence

of phonemes. For each concept Mm, there are words Wm
i for several languages Li in that

family, where Wm
i is a word of a language Li in concept Mm. Words in each concept

are associated with labels say cmi ∈ N which indicate the cluster to which they belong.

A single such cluster of words is called a cognate set. We also define links lkij ∈ {0, 1}

between languages Li and Lj for a concept Mm which indicate if the corresponding words
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Figure 5.1: Examples of cognate clusters for the concept ‘all’ in few Indo-European languages.

are cognates i.e., have the same cluster label. In other words,

lmij =


1 if cmi = cmj

0 if cmi ̸= cmj

(5.1)

The goal of automated cognate detection is to correctly cluster a given set of words that

mean a single concept in a language family. In a supervised setting, the aim is to predict

the linkages correctly.

For an illustration of the overall problem, consider the Indo-European language family

and the concept of ‘all’. The attested lexica in the member languages are Sanskrit sárve

(Vedic víśve), Greek (Ancient) hólos, Latin omnes, German alle, English all, Russian

vse, Czech vše, etc. Among these Vedic víśve, Russian vse, Czech vše form a cluster, i.e.,

a cognate set while Sanskrit sárve and Greek hóla form another cognate set. Similarly,

English and German word forms form another cognate set. The input data is present in IPA

transcription format. Roman transliterated forms are presented here only for demonstration.

See Figure 5.1 as an illustration of this example.
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Figure 5.2: Architecture of Cognate Transformer with Triangular Multiplication and Attention
modules

Skt. - s @ r V e -
Gr. - h o l - o s
Lat. - - O m n E s
En. - - O: l - - -
Ger. - - a l - @ -
Rus. f sj - - - e -
Cze. f S - - - E -

Table 5.1: Example of a Multiple Sequence Alignment (MSA) of phoneme sequences

5.4 Methodology

The overall workflow is described as follows. Given some words from different languages

for a concept in a language family, the words are first aligned (§5.4.1), then converted into

tokens and passed into the cognate transformer (§5.4.2), whose outputs are converted into

pairwise (along language axis) representations by outer product mean module (§5.4.3),

which are then passed into the layers of pairwise module (§5.4.4) whose outputs are

classified into two labels 0 or 1 indicating the pairwise linkage among the languages

(§5.4.5). Since the linkage information is known in the form of cognacy labels, the

architecture described can be thus trained end-to-end. The overall architecture is illustrated

in Figure 5.2.

5.4.1 MSA input

The input words for a concept are aligned together using the SCA method (List, 2010),

where initial pairwise alignments are carried out by using Needleman and Wunsch (1970)

with weights based on sound classes which are further progressively merged guided by

a UPGMA (Sokal and Michener, 1958) tree based on pairwise distances. Progressive
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alignment is a widely used method for multiple sequence alignment which forms the basis

of popular programs such as ClustalW (Thompson et al., 2003). We use the implementation

available in LingPy (List and Forkel, 2021).

The resultant MSA, present in IPA (see Table 5.1), is converted into ASJP (Brown

et al., 2008) representation, a phonemic representation scheme that compacts IPA symbols

resulting in lesser vocabulary size. Note that each token in an MSA need not be a single

phoneme. In the SCA method, consecutive vowels are combined into one token. Language

information is passed as the initial token in each row following Akavarapu and Bhattacharya

(2023a). The resultant tokens are mapped to their respective token numbers and padded

according to the batch. Thus, a typical input to Cognate Transformer lies in Nb×r×c where

b is the batch size, r is the maximum number of rows, i.e., the number of words for that

batch, and c is the maximum sequence length in the batch. From here, we ignore the batch

dimension and simply consider the input to lie in Nr×c

5.4.2 Cognate Transformer

Cognate Transformer (Akavarapu and Bhattacharya, 2023a) handles two-dimensional input

employing separate row and column attentions (see Figure 5.2). The input and output have

the same dimensions. In other words,

CogTran : Nr×c → Rr×c×d (5.2)

where d is the hidden size. The outputs of CogTran are converted into pairwise format by

the outer product mean module.

5.4.3 Outer Product Mean

In this module, as the name suggests, the outer product is computed along each column,

across all rows, and then the mean of outer products is computed across all columns. The
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transformation to the dimensions are

OutProdMean : Rr×c×d → Rr×r×d (5.3)

The intuition is that the multiplication of a pair of transformed embeddings of two

tokens in a single position (i.e., column) of two different words (i.e., rows) should roughly

indicate the similarity or distance between the two words in that particular position. The

mean operation should produce a mean of such similarities across all positions for a pair

of words. Hence, the final matrix would represent a pairwise similarity matrix across the

words in an MSA.

This module is identical to the one in AlphaFold2 (Jumper et al., 2021) except that

the role of rows and columns is interchanged. In other words, in AlphaFold2, the outputs

are pairwise representations of amino-acid-residues (along columns) while in our case the

outputs are pairwise representations of words (along rows).

5.4.4 Pairwise Module

The pairwise module in AlphaFold2, which consists of triangle multiplication and triangle

attention updates via both incoming and outgoing edges, is a differentiable workflow

to capture triangle inequalities that the distances between amino acid residues should

satisfy (Jumper et al., 2021). In our case, we demand that the link predictions (see §5.3

for definition) satisfy the transitivity property which can be translated into the following

condition

lmik · lmjk = lmij if lmik + lmjk ̸= 0 (5.4)

for languages Li, Lj and Lk in a family F for concept Mm. The triangle multiplication

update follows a similar equation but without constraint and, hence, is apt for the problem

at hand. Combining the updates for both incoming (i → j) and outgoing edges (j → i)

ensures the symmetry required for pairwise similarities. The pairwise module does not
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alter the dimensions of the input, i.e.,

PairwiseMod : Rr×r×d → Rr×r×d (5.5)

In AlphaFold2, this module along with the MSA module is embedded within the

Evoformer module. As of now, it is unclear if such embedding would improve the

performance. For this problem, we stack the modules as illustrated in Figure 5.2 for the

sake of simplicity and easier ablation tests.

5.4.5 Classifier and Clustering

The outputs of the pairwise module are passed through a linear layer outputting values

for two classes {0, 1} indicating linkage. Hence, the classifier layer’s transformation is

summarized as:

Classifier : Rr×r×d → Rr×r×2 (5.6)

The softmax probabilities of the outputs pmij for P (lmij = 1) determine the linkage

probabilities. In addition to the above ‘soft’ constraints, the links are also expected

to satisfy the symmetric property, i.e., lmij = lmji . While there are no special modules

included to ensure this property, labels are considered symmetrically (as opposed to only

lower/upper triangle) while computing the loss. During training, the network is trained

with cross-entropy loss. During testing, UPGMA is run for each concept Mm with pairwise

similarities as pmij flat clustered at a threshold of 0.6, which is determined by a small (5%)

held out validation set during training, to obtain the required clusters.

For additional information on the outer product mean and pairwise modules, see

Appendix B.
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Family Meanings Languages Cognates Words
Training data

AN 210 20 2864 4358
BAI 110 9 285 1028
CHN 140 15 1189 2789
IE 207 20 1777 4393
JAP 200 10 460 1986
OU 110 21 242 2055

Total 6817 16609
Test data

BAH 200 24 1055 4546
CHN 180 18 1231 3653
HU 139 14 855 1668
ROM 110 43 465 4853
TUJ 109 5 179 513
URA 173 7 870 1401
AN 210 45 3804 9267
AA 200 58 1872 11827
IE 208 42 2157 9854
PN 183 67 6634 12691
ST 110 64 1402 7074

Total 19136 67347

Table 5.2: Details of the datasets as obtained from Rama and List (2019) indicating the number of
concepts, languages, cognate sets, and words.

5.5 Experimental Setup

In this section, the details of the experiments including datasets, implementation, evaluation

metrics, baseline models, etc. are described.

5.5.1 Datasets

The dataset for both training and testing along with the train-test split is taken from Rama

and List (2019) which was collected from various publicly available sources. It consists of

data from various language families, namely, Austro-Asiatic (AA), Austronesian (AN),

Bai (BAI), Bahnaric (BAH), Chinese (CHN), Huon (HU), Indo-European (IE), Japanese

(JAP), Ob-Ugrian (OU), Pama-Nyungan (PN), Romance (ROM), Sino-Tibetan (ST), Tujia

(TUJ), and Uralic (URA). The statistics of the data are provided in Table 5.2.
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As is evident from the table, the original training size is disproportionately much lesser

than the test size. Many language families in tests such as AA, PN, HU, etc. are completely

absent in the training set. We also test the model on increased supervision by augmenting

the training data with some proportion of test data. In particular, apart from the original

train-test split, we also test by including 12.5% and 50% additional test concepts, i.e.,

approximately 20 and 100 additional test concepts respectively per language family. For

both the proportions, data is divided into 5 random splits. Hence, the results reported for

12.5%+ and 50%+ proportions are five-fold cross-validated.

5.5.2 Implementation Details

The architecture we deploy has two Cognate Transformer layers and two layers of pairwise

module (see Figure 5.2). In the Cognate Transformer, the number of attention heads is also

2. The maximum vocabulary size of the tokenizer is set to 768, while the maximum words

and sequence length in an MSA are both set to 256. Both hidden size d and intermediate

size, wherever there is projection, are 128. This amounts to a network of about a million

parameters. The network was trained with a batch size b of 4 and tested with that of 2.

Low batch size is due to the limitation of GPU memory (10 GB in our case) since MSAs

combined in both the dimensions and the pairwise representation layers easily blow up the

memory. The training was performed using AdamW optimizer (Loshchilov and Hutter,

2017) with learning rate 1e-3 as implemented by HuggingFace (Wolf et al., 2020). During

testing, the pairwise softmax probabilities (similarities with 1 being the most similar)

are used for flat clustering using UPGMA at a threshold of 0.6, arrived through held-out

validation from the train set (5%). The total time taken for one run of train and test is less

than 15 minutes on GPU. This is much smaller when compared to the models that operate

on a pair of words at a time instead of on an MSA. The code is made publicly available1.

1https://github.com/mahesh-ak/CogDetect

https://github.com/mahesh-ak/CogDetect
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5.5.3 Evaluation Metrics

The outputs of the entire algorithm are clusters (see §5.4.5), i.e., every word gets a cluster

label assigned which is to be compared with the gold cluster labels. The usual F1 score is

not a proper measure since the assigned cluster label is not important; rather, members of

the same cognate set must get assigned to the same cluster. Hence, the B-Cubed F1 score

(Amigó et al., 2009) is the appropriate evaluation measure; it has been employed in the

previous works for this problem as well (see Appendix C for details on BCubed metrics).

We use the implementation available in LingPy (List and Forkel, 2021).

5.5.4 Baseline Models

LexStat-Infomap

We label the model defined so far as CogTran2. The foremost base model with which

we compare the performance of CogTran2 is LexStat-Infomap (List et al., 2017) whose

performance is more or less the state-of-the-art as discussed in §5.2. The original model

employs 10,000 permutations between each language pair in a family to obtain language-

specific distributions. Hence, this method requires significant test data to be known

beforehand to preprocess. We call this model as LexStInf10K. This method takes more

than 2 hours on a CPU to obtain results on one test set. Hence we also report for the model

that has the number of runs as 1000, which we label as LexStInf1K which takes less than

15 CPU minutes. These are imported from LingPy (List and Forkel, 2021).

SCA

We also test on SCA-based model (List, 2010) where a pairwise distance depends on

sound classes and alignment. Since it does not depend on any sort of computation such as

language-specific distributions, this is the fastest method and, unlike LexStat-Infomap, can

be run on any unseen data. We label this as SCA. For both LexStat-Informap and SCA, we

use the flat cluster thresholds 0.6 and 0.45 respectively, as mentioned in List et al. (2017),

since the training data is the same.
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SVM

We also compare with the SVM-based model (Jäger et al., 2017), labeled as SVM, and the

Siamese-CNN-based model (Rama, 2016) as these are supervised models. This model

uses LexStat score and PMI scores as primary features and, hence, takes a long time to

preprocess data, i.e., about 6 hours when each split is processed in parallel on a CPU when

the number of permutations runs is 1000 (for LexStat similarity). Since this is a relatively

much longer time, we do not increase the number of runs any further. SVM is trained on

pairwise binary classification tasks which give pairwise cognacy probabilities for further

clustering. We use publicly available code for this model2.

Siamese CNN

From the proposed Siamese CNN architectures (Rama, 2016), we use the model mentioned

as charCNN with language features that show good overall performance among the models

that are proposed therein. We label this model as CharCNN. The network is trained on

pairwise supervised binary classification tasks. The pairwise probabilities of the network

are used further for clustering (UPGMA). CharCNN is implemented from scratch in

PyTorch closely following the TensorFlow code that was made publicly available by the

author 3.

Ablation Models

We also test on ablations, namely, without pairwise module which we call simply CogTran.

We also test by increasing the number of hidden layers to 4 of this same model which

we label as CogTranL4.

Further, we test on a variant that does not use input MSA but rather only an alignment

of a pair of words at a time akin to all other previous models but unlike CogTran2. In this

model, pairwise binary classification is performed which gives probability scores for each

pair of words in a concept. Further, clustering (UPGMA) is performed using these pairwise

2https://github.com/evolaemp/svmcc
3https://github.com/PhyloStar/SiameseConvNet/

https://github.com/evolaemp/svmcc
https://github.com/PhyloStar/SiameseConvNet/
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scores. To be more specific, the input is an aligned word pair and the resultant output

embeddings are summed before the binary classifier, while in Siamese-CNN (Rama, 2016),

the absolute differences of embedding pairs are considered before the classifier layer. We

note that summing should not be different since the network can always adjust the signs

within embeddings themselves. We call this model CogTranPair. For these models, the

link prediction is not part of the end-to-end architecture, unlike for the model we propose.

As a result, the models are run separately on all possible pairs of words in a concept.

Data+% Method Language Families Mean
BAH CHN HU ROM TUJ URA AN AA IE PN ST

+0%

SCA .864 .793 .857 .873 .894 .909 .775 .760 .806 .709 .561 .800
LexStInf10K .894 .857 .883 .910 .899 .913 .840 .773 .826 .845 .592 .839
LexStInf1K .894 .855 .873 .912 .900 .907 .839 .759 .818 .820 .595 .834
CharCNN .759 .837 .876 .666 .845 .886 .698 .722 .725 .784 .473 .752
SVM .865 .845 .860 .927 .899 .913 .845 .734 .828 .782 .593 .826
CogTran2 .854 .864 .857 .907 .893 .899 .786 .756 .845 .797 .572 .821

CharCNN
.830

(.010)
.847

(.006)
.873

(.010)
.896

(.007)
.892

(.015)
.895

(.006)
.777

(.007)
.752

(.007)
.825

(.008)
.786

(.002)
.535

(.025)
.810

(.002)

+12.5% SVM
.878

(.006)
.836

(.006)
.882

(.010)
.934

(.007)
.919

(.005)
.914

(.006)
.840

(.003)
.767

(.012)
.831

(.004)
.765

(.012)
.582

(.012)
.832

(.002)

CogTran2
.884

(.004)
.867

(.005)
.890

(.011)
.907

(.013)
.913

(.015)
.904

(.006)
.810

(.005)
.813

(.003)
.851

(.003)
.804

(.007)
.607

(.020)
.841

(.002)

CharCNN
.876

(.011)
.854

(.007)
.880

(.005)
.914

(.012)
.899

(.018)
.904

(.012)
.795

(.008)
.784

(.005)
.840

(.006)
.785

(.011)
.563

(.011)
.827

(.003)

+50% SVM
.881

(.010)
.838

(.009)
.889

(.014)
.935

(.010)
.927

(.012)
.914

(.009)
.840

(.010)
.779

(.009)
.828

(.007)
.775

(.009)
.577

(.019)
.835

(.002)

CogTran2
.893

(.011)
.878

(.005)
.901

(.006)
.921

(.015)
.916

(.009)
.914

(.007)
.823

(.006)
.832

(.008)
.853

(.004)
.812

(.006)
.644

(.015)
.853

(.002)

Table 5.3: Results (B-Cubed F-scores) with language families indicated across columns along with
standard deviations in parentheses for cross-validated values. The best scores within a specific
train-test split are shown in bold.

5.6 Results

The results are summarized in Table 5.3. The first column indicates the additional propor-

tion of concepts that is moved from test data to training data. Thus, it roughly indicates

the amount of increased supervision. The second column indicates the various methods

discussed in §5.5.4 compared against the proposed model, CogTran2. The rest of the

columns indicate the B-Cubed F scores (see §5.5.3) for various datasets discussed in §5.5.1.

The last column indicates the mean B-Cubed F-scores averaged across the aforementioned

datasets.
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Figure 5.3: Plot of average B-Cubed F scores of various methods against % additional supervision

For the additional proportions +12.5% and +50%, the reported scores are means along

with standard deviations (in parentheses) over the five validation sets (see §5.5.1). Note

that the standard deviation for the overall averaged B-Cubed F score is considerably much

less than those of individual datasets. This happens since in every run on a train-test split

the model may perform high on one dataset or low on the other, yet when it comes to the

mean performance it is quite stable. The averaged B-Cubed F scores are also plotted for

each method across all the splits in Figure 5.3.

5.6.1 Discussion

From the results, it is visible that with increased supervision, CogTran2 improves consis-

tently when compared to other supervised methods. At the same time, CogTran2 crosses

the previous best LexStInf10K with additional +12.5% supervision, i.e., with only 20

concepts per family. Since the results of proportions +12.5% and +50% are cross-validated,

it is possible to compare the performances throughout. Note that LexStat is not a su-

pervised method and, hence, additional supervision does not make sense with it. With

zero additional data, CogTran2 surpasses all the other methods on CHN and IE language

families since they are present in training as well. While AN data is also present in both

sets i.e., train and test, the individual languages do not overlap much as in the case of CHN
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Method Data Split

+0% +12.5% +50%

CogTran2 0.821 0.841 (± 0.002) 0.853 (± 0.002)
CogTran 0.815 0.830 (± 0.002) 0.841 (± 0.002)
CogTranL4 0.806 0.830 (± 0.002) 0.842 (± 0.004)
CogTranPair 0.779 0.813 (± 0.003) 0.833 (± 0.001)

Table 5.4: Mean B-Cubed F scores on various data splits for various ablation models. Standard
deviations are indicated in parentheses for the data splits where cross-validation was performed.

and IE.

Although SVM beats CogTran2 on +0% additional data, which is not surprising since

this is primarily dependent on LexStInf1K scores, it shows only a little increase in scores

with an increase in additional training. Hence, overall, it is behind CogTran2 for the

other two proportions. The maximum score of SVM does not appear to be significantly

different from its base model LexStInf1K on whose scores it is dependent. We performed

Student t-tests vis-à-vis SVM and CogTran2 scores for proportions +12.5% and +50%.

On whatever dataset CogTran2 leads ahead of SVM, it is statistically significant for a 5%

level of significance, i.e., p < 0.05. SVM leads ahead of CogTran2 significantly only on

two datasets, namely, Austronesian (AN) and Romance (ROM) in both proportions. The

reason for this is unclear as of now. Analysis with linguistic expertise in these languages

could possibly unveil the cause.

CharCNN has the disadvantage of not using aligned input. Hence, it lags behind

other models as expected (except SCA at extra supervision) despite showing a significant

improvement over the additional training data.

Hence, it can be concluded that CogTran2 is the best performing model when there is

sufficient labeled data. It is also likely to show improvement when there is plenty of labeled

data. Further, given the availability of GPU and considering the present implementations,

CogTran2 is much faster since it starts from MSA and not from independent pairwise

computations.
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Figure 5.4: Mean B-Cubed F scores for various ablation models across the data splits.

5.6.2 Ablation Tests

The results of the ablation tests described in §5.5.4 on the data proportions +0%, +12.5%

and +50% are presented in Table 5.4. The first column indicates the method and the second

column lists the respective B-Cubed F-score averaged over all the datasets. These are mean

scores along with standard deviations across all five cross-validated sets. These results are

also plotted in Figure 5.4. CogTran, which lacks a Pairwise module (§5.4.4), underperforms

significantly than CogTran2, which is the model proposed. Also, increasing the number of

layers to 4 in CogTranL4 does not help either. Hence, it can be concluded that the Pairwise

module alone contributes to further increasing the performance in CogTran2. Further since

CogTrainPair, unlike the other two, starts from aligned word pairs akin to all other previous

models, and takes input from an aligned word pair and outputs cognacy probability for

that pair. Hence, the Pairwise module cannot be incorporated into this setup.

It is visible that CogTran, which acts on an MSA input performs way better than

CogTranPair which acts on aligned word pairs. At the same time, CogTran (< 20 GPU min

per split) is much faster than CogTranPair (about 1 GPU hr per split) for the same reason.

In other words, let input MSA have r rows and c columns, then CogTranPair acts on all

possible pairs of rows hence, in O(r2) steps. On the other hand, CogTran for a single MSA

acts only once which results in the speed-up.
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5.6.3 Error Analysis

To understand the working of CogTran2, we attempt to study some of the cluster predictions

as follows. For this purpose, we consider CogTran2 trained on +12.5% proportion and the

results on IE (Indo-European) dataset.

Sound Correspondences

The fundamental aspect for comparing two languages is to identify regular sound corre-

spondences (Campbell, 2013). Methods like LexStat (List, 2012a) have built similarity

metrics for cognacy judgement between two words giving weightage to both the recurrent

sound correspondences as well as phonetic information. In this regard, we note that

CogTran2 appears to have learned some recurrent sound correspondences by observing the

initial consonant. For example, Proto-Indo-European *s- undergoes lenition in Hellenic

branch and appears as h- is Ancient Greek (Mallory and Adams, 2006). In the dataset we

have used, two words occur as instances for this sound change, namely, /"hE:lios/ ‘sun’ and

/"hals/ ‘salt’. Both these words are clustered correctly with their cognates in other daughter

languages such as Old Norse /so:l/, Oriya /surdZO/ in case of the concept ‘sun’ and English

/sO:lt/, French /sEl/ in case of the concept ‘salt’. Thus, one may assume that the sound

change PIE *s > Ancient Greek h has been learned by the model.

Another set of sound changes where position of articulation changes is Grimm’s law

where Proto-Indo-European hard consonants undergo a chain shift in Germanic family

(Mallory and Adams, 2006). For instance, in the velar shift defined by Grimm’s law i.e.,

*gh > *g > *k > *h , change in the place of articulation occurs in the sound change *k >

*h. The model also learns this sound change as supported by the instances mentioned as

follows. For the concept ‘dog’, German /hUnt/ has been correctly clustered together with

Ancient Greek /"kyOn/ and Old Irish /ku:/. Further, for the concept ’horn’, German /hOrn/

and Ancient Greek /keras/ are similarly clustered together correctly. This sound change has

been learned by the model to an extent that unrelated German /hIml
"
/ and Latin /kae

“
lUm/

meaning ‘sky’ have been classified as cognates. Both the sound changes mentioned above

have two instances as examples in the dataset.
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On the other hand, Marathi /dzaN/ and Ossetic /zon/ for the concept ‘know’ have been

incorrectly classified as different. This happens to be the only example where the phonemes

/dz/ and /z/, which fall in different sound classes, co-occur in the respective languages.

Hence, it may be concluded that at least two examples are needed to learn a sound change.

However, it is desirable to perform a thorough quantitative analysis of recurrent sound

changes to support these findings. It could not be performed due to a lack of readily

available annotated data for the same.

Partial Cognacy

Further, the network seems to consider the entire word and not just the important root in

some cases. For example, for the meaning ‘woman’, Old Norse /kven: maDr/ and Icelandic

/khvEn ma:Dr/ have been assigned a different cluster than that of Old Swedish /kvin:a/ and

Danish /ghven@/. This is conceivable since affixes cannot be learned to be ignored easily.

Detection of sub-word cognates in presence of such affixes is part of partial cognacy

problem which was dealt in List et al. (2016). It is, thus, clear that CogTran2, at its present

training level, cannot distinguish partial cognates.

Other Errors

Many errors are, however, somewhat incomprehensible. For example, in the case of

‘tooth’, Greek /"Dondi/ has been clustered together with English /tu:T/ but not with Italian

/dEntE/. There could be a role of root vowel in this particular example. Nevertheless, it is

important to understand the source of errors which demands linguistic expertise to identify

the bottlenecks of the current models and to improve beyond them.

5.7 Summary

In this chapter, we have proposed a Transformer-based model inspired by evolutionary

biology for the task of automatic cognate detection. The model can harness efficiently

the labeled data and consequently, with sufficient data, outperforms existing approaches

that do not make efficient use of supervision data. In particular, better results are obtained
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with only 20 concepts per family on some of the datasets. To the best of our knowledge,

we proposed for the first time in this particular problem a method that directly outputs

link probabilities, i.e., pairwise similarities from an input MSA in an end-to-end fashion,

unlike all the previous methods which act on aligned pairs of words. We demonstrated

through the primary results and ablation studies that this approach of inputting MSA rather

than paired alignments results not just in a significant increase in performance but also in

drastically reducing the computation time. We have also demonstrated by observing few

outputs that the model is capable of learning regular sound changes from just two example

instances in the data for a particular sound change.

Evaluation of Cognate Transformer on phylogenetic reconstruction task (Rama et al.,

2018) is an unexplored problem and, thus, can be a potential topic of future work.

Limitations

As mentioned in §5.6, the proposed model lags on the datasets Romance and Austronesian

somewhat behind SVM and LexStat-Infomap and on Pama-Nyungan concerning Lexstat-

Infomap despite increasing the supervision. While the performance on the Romance dataset

is near saturated (>92%) in any case, the lag in performance on Austronesian and Pama-

Nyungan data is an issue that is required to be studied with domain linguistic expertise to

understand the bottleneck of this model. Similarly, although our model improves drastically

on Sino-Tibetan by 5% when compared to the previous best, it is an underperforming

dataset since the B-Cubed F-scores on all other datasets except this are more than 80%.

Thus, a similar study with linguistic expertise is required to identify the bottleneck of the

overall methodologies. Additionally, as mentioned in §5.5.2, a GPU memory of 10GB

could only accommodate a batch of size 4 during training with maximum MSAs, i.e., when

the number of languages in a family was 136. Thus, larger GPU storage is required for

larger mass comparisons involving more languages under comparisons. As mentioned

in §5.6.3, the ability of the model to learn regular sound correspondences has only been

determined by anecdotal instances. A more thorough quantitative study is desirable, which

requires annotated data for the same. The model also does not account for partial cognacy,
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i.e., identifying distinctions between exact cognates versus morphologically modified or

compounded cognates (see §5.6.3) as addressed in List et al. (2016). Further, the model is

also not tuned at this point to distinguish between true cognates and borrowals.



Chapter 6

Likelihood Ratio Test of Genetic

Relationship

Lexical resemblances among a group of languages indicate that the languages could be

genetically related, i.e., they could have descended from a common ancestral language.

However, such resemblances can arise by chance and, hence, need not always imply

an underlying genetic relationship. Many tests of significance based on permutation of

wordlists and word similarity measures appeared in the past to determine the statistical

significance of such relationships. We demonstrate that although existing tests may work

well for bilateral comparisons, i.e., on pairs of languages, they are either infeasible by

design or are prone to yield false positives when applied to groups of languages or language

families. To this end, inspired by molecular phylogenetics, we propose a likelihood ratio

test to determine if given languages are related based on the proportion of invariant

character sites in the aligned wordlists applied during tree inference. Further, we evaluate

some language families and show that the proposed test solves the problem of false

positives. Finally, we demonstrate that the test supports the existence of macro language

families such as Nostratic and Macro-Mayan. This chapter is based on Akavarapu and

Bhattacharya (2024b).
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6.1 Introduction

Languages that descend from a common ancestral language are termed to be genetically

related. The existence of lexical resemblances between the two languages is a preliminary

indication that they could be related. Such resembling lexicons that truly have a common

origin are called cognates. For instance, Sanskrit nāma and English name are cognates

that can be traced to Proto-Indo-European *h3nómn. However, such resemblances can also

occur out of sheer chance. For instance, Persian bad and behtar accidentally resemble

English bad and better respectively, but are not true cognates1. Hence, it is necessary

to show statistical significance on any appropriate measure that captures the lexical

relatedness before arguing for a genetic relationship among any group of languages or

language families (Campbell, 2013).

Several significance tests appeared in the past to address this problem, with the majority

of them based on permutation tests, starting from Oswalt (1970). Given wordlists of a group

of languages to be evaluated for a genetic relationship, these tests obtain the null distribution

of a certain measure capturing similarity between word pairs by random permutations of the

wordlists. Such tests either act bilaterally, i.e., on a pair of languages or proto-languages,

or multilaterally on a group of languages. Among these, the multilateral comparison,

which was made famous by Greenberg (1963, 1971, 1987, 2000) in traditional historical

linguistics, has been a subject of much criticism (Poser and Campbell, 2008). Hence, the

preferred way of comparing two language families has been to compare their reconstructed

proto-forms bilaterally. However, Greenberg (2005) argues that genetic classification

should precede proto-language reconstruction. Moreover, there is often a lack of agreement

on reconstructed proto-forms both in terms of phonology and semantics which gives room

for sufficient manipulation of wordlists that can in turn alter the results of significance

tests (Kessler, 2015). Further, we demonstrate that multilateral permutation tests (Kessler

and Lehtonen, 2006; Kessler, 2007) yield false negatives even after incorporating complex

word similarity metrics such as SCA and LexStat (List, 2010, 2012a).

1Persian bad is of uncertain origin while behtar ultimately derives from PIE *h1wésus. On the other
hand, English better derives from PIE *bhedrós and is cognate with Sanskrit bhadrá
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To overcome these issues, we turn to phylogenetic analysis (Wiley and Lieberman,

2011) that is known to approximately capture the ancestral states and has been applied

to phonological reconstruction tasks such as proto-language and cognate reflex predic-

tion tasks (Jäger, 2019, 2022) with reasonably good results. Specifically, we propose a

likelihood ratio test (LRT) where we expect the difference in likelihoods of the best trees

under null and alternate hypotheses to capture genetic relatedness. The null hypothesis

assumes negligible proportion of invariant sites while the alternate hypothesis assumes

significant proportion of invariant sites. Intuitively, related languages should have more

positions where a character or a sound class is invariant than unrelated languages. Hence,

we essentially capture the notion of relatedness as possessing a relatively high proportion

of invariant sites. Further in this test, reconstructed proto-forms are not required and at

the same time, the evolutionary tree structure is strictly imposed by design, unlike the

multilateral model, thereby effectively circumventing the aforementioned methodological

problems. Although inspired by similar tests from molecular phylogenetics, the test we

propose is novel in the sense that the problem of testing common descent never arises in

biology since monogenesis is accepted as a fact therein (Kessler, 2008). We further evalu-

ate the test on various language families and demonstrate that the test does not misclassify

unrelated languages as related.

We finally show that the test supports the existence of the macro-families Nostratic

(Bomhard and Kerns, 1994) and Macro-Mayan (Campbell, 1997). While such an attempt

to justify the existence of macro-families using bootstrap analysis of distance-based

phylogeny is found in Jäger (2015), expressing statistical significance in terms of likelihood

ratio is preferred over bootstrap support values whose interpretation is debated in molecular

phylogenetics (Anisimova and Gascuel, 2006).

Our contributions are summarized as follows.

• We have proposed a likelihood ratio test to determine the genetic relatedness of a

group of languages based on invariant site proportions.

• We have demonstrated by applying various language sets that the test does not exhibit

the problem of false positives nor requires reconstructed proto-forms, unlike the
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previously proposed tests.

• We have found through the test some supporting evidence for the existence of

macro-families namely Nostratic and Macro-Mayan

The rest of the chapter is summarized as follows. Related work is discussed in §6.2.

The methodology of the test is presented in §6.3. Evaluation details such as datasets and

details of previous methods and variants are discussed in §6.4. The results are discussed in

§6.5. The application of the method on long-range comparisons is discussed in §6.6. This

chapter is finally concluded in §6.7.

6.2 Related Work

Permutation test for bilateral language relationship comparisons was introduced by Oswalt

(1970). The significance of sound correspondences by brute force probability calculation

was proposed by Ringe (1992, 1996). This approach was however criticized for not being

able to show significance for known related pairs of languages like Latin-English and

also for accounting phonologically implausible sound correspondences (Kessler, 2001).

Multilateral permutation tests were proposed by (Kessler and Lehtonen, 2006; Kessler,

2007). Several applications of permutation tests exist such as (Turchin et al., 2010; Kassian

et al., 2015).

Some notable likelihood ratio tests in molecular phylogenetics, mostly on topologies,

include (Huelsenbeck and Bull, 1996; Huelsenbeck et al., 1996; Goldman et al., 2000;

Anisimova and Gascuel, 2006) where bootstrap analysis is argued to be not so optimal to

establish statistical significance on phylogenies. Otherwise, support for macro-families

through bootstrap analysis for distance-based trees is shown in Jäger (2015). Comparisons

of various methods of phylogenetic reconstruction such as distance-based and binary-

character-based are given by Jäger (2018). Sound-class character-based phylogenetic

analysis is found in (Jäger, 2019, 2022). Usually, Bayesian phylogenetic inference on

binary cognate encodings gives good results (Rama et al., 2018; Rama and List, 2019).

Although the likelihood ratio metric is common for both past and present-day lan-
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Figure 6.1: A section of character matrix for Uto-Aztecan family consisting of concatenated
Multiple Sequence Alignments (MSAs) of consonant classes, one from each concept

guage models, the utility of this test using invariant sites outside computational historical

linguistics is unknown.

6.3 Methodology

The key concept revolves around the idea that any hypothesis, in this case, a hypothesis on

a phylogeny, is preferred over a competing null hypothesis if it is significantly more likely,

i.e., has a higher likelihood than the latter. Given the wordlist data encoded as an aligned

character matrix, related languages are expected to have a higher number of invariant

columns. Thus, our null hypothesis consists of a phylogeny with a small proportion (fixed

at 1%) of invariant sites, whereas the alternative hypothesis consists of a phylogeny with a

larger but reasonable proportion (fixed at 6%) of invariant sites. The observed difference

in their likelihood of real data is compared with that of data simulated from the null

hypothesis through parametric bootstrapping and, accordingly, one of the hypotheses is

rejected. The steps are elaborated next.

6.3.1 Character Matrix

The wordlists of a given group of languages, as mentioned previously, are encoded in the

form of a character matrix. It consists of concatenated aligned words per concept, i.e.,

meaning. Thus, each row represents a language or taxon, and each column, also referred

to as site in this chapter, consists of phoneme classes, e.g., Dolgopolsky classes. Use of

phoneme classes facilitate comparisons across languages which may otherwise be difficult

due to the existence of significant variation in the IPA consonants. Formally, let the input

language set be {L1, . . . , Lm}, whose genetic relatedness is to be verified statistically. Let
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Greek_Anc K R - S
Latin K R N - -
English H R N - -
Sanskrit S R N K -

Table 6.1: Example of a Multiple Sequence Alignment (MSA) of consonant classes for a single
concept ‘horn’.

there be n concepts C1, . . . , Cn in the wordlists. Each language Li should have for each

concept Cj a single word, say wij . If a language has multiple words for a single semantic

slot, only the one with fundamental or core meaning is observed manually and retained,

following the recipe by Kessler (2001). For instance, if the meaning ‘dull’ has words

dull and unsharp, dull is of core or fundamental meaning. Another example would be for

the meaning ‘belly’, Latin venter is more fundamental than abdōmen. If it so happens

that it still remains unresolved after this step (very few cases), a single word is randomly

picked up. In case a language has no word for a semantic slot, it is represented as a gap ‘–’.

For each concept Cj and alphabet set A, let W j ∈ Am×lj represent a multiple sequence

alignment (MSA) of words where lj is the length or the number of phonemes with vowels

removed2 in each word. The final character matrix X ∈ Am×N is concatenation of W j ,

i.e., [W 1 . . .W n] across columns and N =
∑n

j=1 lj .

For example, consider a cognate set meaning ‘horn’ from a few Indo-European lan-

guages namely, Ancient Greek keras, Latin cornu, English horn, and Sanskrit śr. ṅga. The

resultant character matrix for this single meaning is a multiple sequence alignment with

vowels removed and consonants encoded as Dolgopolsky classes as illustrated in Table 6.1.

The final character matrix is the concatenation of such matrices across all the concepts. For

an illustration of a final character matrix, see Figure 6.1, which is generated by MEGA11

(Tamura et al., 2021). In general, multiple sequence alignment is a fundamental step in

several state-of-the-art methods in computational historical linguistics (Akavarapu and

Bhattacharya, 2023a, 2024a).

2Since the root form CVC is universal, including vowels results in spurious relationships. Further,
languages of Caucasus like Georgian are rich in consonant clusters and, as a result, comparing them to others
becomes difficult when vowels are considered.
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6.3.2 Substitution Model

A substitution model describes the evolution of a character at a site assuming a Markovian

process. Various substitution models have been described for various alphabets such as

nucleotides, amino acids, etc. In this chapter, we assume the simplest possible model

where substitution rates are assumed to be equal between all the pairs of distinct characters.

The resultant model is known as the Jukes-Cantor model (Jukes et al., 1969) in case of

nucleotide substitutions and as Poisson (Bishop and Friday, 1987) in case of amino-acid

substitutions. Formally, let the number of characters in the alphabet A be N . An element

qij of the rate matrix Q, which denotes the rate at which character i mutates to character j

is defined as follows:

qij = µ · πi , i ̸= j (equal rates) (6.1)

where πi denotes the frequency of character i at the site and µ is the rate of mutation. The

diagonal element should satisfy the normalization constraint:

qii = −
∑
j ̸=i

qij (6.2)

The probability of transition i→ j in time t is given by the matrix P (t) = {pij} = eQt.

Likelihood of an evolutionary tree with topology T can be, thus, calculated from the

substitution matrix where branch lengths V would denote the time. See Figure 6.2 for an

example.

6.3.3 Maximum Likelihood Tree (ML-tree)

For any phylogenetic tree with topology T , branch lengths V , other parameters such as

shape parameter of heterogeneous rate, the proportion of invariant sites denoted by Θ, and

with the observed data i.e., character matrix X , the likelihood is defined as the product of

likelihoods at each site as given by the following equation, assuming independence for
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Figure 6.2: Likelihood of a phylogenetic tree T with branch lengths V is computed assuming
equal rate evolution substitution model.

simplicity:

L(T, V,Θ|X) =
N∏
i=1

P (Xi|T, V,Θ) (6.3)

The site independence assumption also restricts the number of parameters. Given

the limited amount of data, which is restricted to 100-200 wordlists3, this is, thus, more

suitable. Complex models such as bigram-based ones may be employed if sufficient data

is available.

The parameters that maximize the likelihood, T̂ , V̂ , and Θ̂, define the maximum

likelihood tree which is usually obtained by heuristic search in the parameter space.

Typically, a tree is initialized either randomly or by some heuristic means, and from there,

the tree space is explored through tree modifying operations to get the “best” tree. For a

given tree, likelihood is computed using the well-known Felsenstein’s pruning algorithm

from phylogenetics (Felsenstein, 1973, 1981).

6.3.4 Invariant Sites

Invariant sites are those sites that are constant or evolve very slowly. These can be estimated

through a maximum likelihood search along with other parameters. The proportion of

invariant sites, Pinv may be known beforehand or estimated. Given the invariant sites, the

3For any language, 100-200 basic wordlists tend to have least presence of borrowings.
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likelihood defined in §6.3.3 is only the product of likelihoods across the variant sites.

Our observation is that estimated Pinv is higher (>0.06) among related languages

while lower (≈0.01) among (possibly) unrelated languages. Based on this observation and

preliminaries, we now describe the likelihood ratio test.

6.3.5 Likelihood Ratio Test (LRT)

Given a null hypothesis H0 and a competing alternative hypothesis Ha, the latter is

preferred if it is more likely than the former i.e., LHa > LH0 . In our case, the hypotheses

consist of respective phylogenetic tree parameters estimated for ML-trees, i.e., H0 consists

of T̂0, V̂0, Θ̂0 and Ha consists of T̂a, V̂a, Θ̂a. The likelihood ratio test defines the following

metric to decide whether to reject the null hypothesis:

δ = 2 · ln

(
L(T̂a, V̂a, Θ̂a)

L(T̂0, V̂0, Θ̂0)

)
(6.4)

The Likelihood Ratio Test (LRT) metric δ was shown to asymptotically follow a chi-

squared distribution when the null hypothesis is assumed with the degrees of freedom p−q,

where p and q respectively are the numbers of free parameters in the alternate and the null

hypotheses (Wilks, 1938). However, it was argued that this may not hold in general for

phylogenetic problems due to the discrete nature of tree topology (see (Huelsenbeck and

Bull, 1996; Huelsenbeck et al., 1996; Anisimova and Gascuel, 2006) for relevant work).

As a result, the distribution of δ is determined by a parametric bootstrapping method

where it is measured on the data simulated by the parameters estimated assuming the null

hypothesis H0 to hold, i.e, using the parameters T̂0, V̂0 and Θ̂0.

As mentioned in §6.3.4, we propose LRT to test the relatedness of a group of languages

using varying proportions of invariant sites. In other words words the null hypothesis

H0 consists of invariant site proportion P 0
inv and alternate hypothesis Ha consists of P a

inv

where P 0
inv < P a

inv as per the observations discussed in §6.3.4.

The typical way of obtaining the distribution for δ under H0 involves finding the

parameters {T̂0, V̂0, Θ̂0} and {T̂a, V̂a, Θ̂a} for the best trees respectively under H0 and Ha
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Family Abbrv. Languages Concepts Words
Afrasian AfA 21 39 770
Dravidian Drav 4 183 716
Indo-European IE 12 185 2209
Kartvelian Kart 1 180 180
Lolo-Burmese LoBur 15 39 565
Mayan May 30 94 2667
Mixe-Zoque MZ 10 94 905
Mon-Khmer MKh 9 199 1701
Mon-Khmer MKh 16 94 1332
Munda Mun 4 199 759
Uto-Aztecan UAz 9 94 803

Table 6.2: Language families considered in this study.

along with observed δ, say δ̂. Further, several, say k, bootstrap replicates are generated

from the topology, branch lengths, and other parameters defined by {T̂0, V̂0, Θ̂0}, i.e.,

assuming H0. Next, the maximum likelihood search is run again on these replicates to

obtain several samples for δ, say {δ1, . . . , δk}. However, we found considerable variation in

δ̂, since the maximum likelihood search is only a heuristic and is affected by initialization.

As a result, we obtain several samples for δ̂, say {δ̂1, . . . , δ̂k} by running the search k

times and based on the null parameters, a single bootstrap replicate is generated for each

search to consequently obtain {δ1, . . . , δk} for corresponding k searches. Finally the p-

value for E[δ] < E[δ̂] is obtained by one-sided paired t-test. If the p-value is less than a

threshold (usually 0.05), we conclude that Ha may hold or, in other words, there are at

least P a
inv proportions of sites that are significantly invariant and, thus, the languages under

consideration are likely to be related.

6.4 Experimental Setup

The section discusses the details of the experiments including datasets, baseline models,

and implementation details.
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6.4.1 Datasets

The data for evaluating the tests consists of wordlists from multiple language (sub-)families

and their combinations. Combinations of related sub-families serve as positive examples

while those of unrelated serve as negative examples. Evaluating the macro-families also

consists of language groups whose relationship is only distantly suggested such as Nostratic

(Bomhard and Kerns, 1994).

The details of data from each family are shown in Table 6.2. Out of these, Mon-Khmer

and Munda (200 wordlists) are extracted from the Austro-Asiatic data from Rama et al.

(2018). Data for Old languages of Nostratic comprising Indo-European, Dravidian, and

Kartvelian are prepared by us from the Swadesh 200-wordlists available at Wiktionary4.

Data for all the other families are obtained from Rama (2018) which were, in turn, collected

from various publicly available sources. The datasets are the same as those found in related

tasks such as automated cognate detection and proto-language reconstruction.

In the Nostratic grouping, we considered the languages that are surviving or have

surviving descendants and were attested by the 10th century CE. The motivation behind

this choice is that older languages should be closer to the ancestral language and each other

if at all there is any relationship. Several languages including literary Dravidian languages,

Georgian, and Armenian are mostly conservative and deviate little from their old forms.

The data is pre-processed by excluding motivated word forms including onomatopoeia,

and nursery forms, listed in Kessler (2001). Short forms, i.e., words consisting of single

syllables are also excluded. Such cleaning is necessary to avoid the appearance of spurious

relationships. In the case of Nostratic, we were also careful to exclude borrowings by

tracing etymologies from Wiktionary4. This step could not be extended to other language

families due to a lack of readily available etymological information.

All the methods employed in this work, including both the proposed one and baseline

ones described in §6.4.2, involve the construction of a phylogenetic tree. Hence, we also

compare the methods on a tree construction task where we see how well the trees match

the golden truth trees wherever available. The data for this task is taken from Rama et al.

4https://en.wiktionary.org/wiki/Category:Swadesh_lists_by_language

https://en.wiktionary.org/wiki/Category:Swadesh_lists_by_language
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Family Abbrv. Languages Concepts Words
Austro-Asiatic AA 58 200 11001
Austronesian AN 45 210 8309
Indo-European IE 42 208 8478
Pama-Nyungan PN 67 183 11503
Sino-Tibetan ST 64 110 6762

Table 6.3: Language family datasets for tree construction.

(2018) as summarized in Table 6.3.

6.4.2 Multilateral Permutation Test

As mentioned in §6.1, most previous methods compare languages bilaterally, i.e., a pair

at a time. As a result, the only possible way to compare the language families in this

approach is to compare their reconstructed proto-languages. However, proto-forms of a

proto-language are not often universally agreed which leads to considerable allowance of

manipulation that can affect the results (Kessler, 2015). An alternate solution to determine

the significance of the relationship among multiple languages was proposed by Kessler and

Lehtonen (2006) and Kessler (2007) who employ a permutation test based on multilateral

comparison. This has been well received in historical linguistics (Ringe and Eska, 2013).

The test is based on nearest-neighbour hierarchical clustering where at any point two

closest clusters are lumped into one cluster. The basic distance measure, d̂(A,B), between

any two clusters A and B is the average of distances between all possible pairs of languages

in these clusters, i.e.,

d̂(A,B) =
1

|A| · |B|
∑
a∈A

∑
b∈B

d(a, b) (6.5)

where the distance d(a, b) between any two languages a and b is the mean distance between

the pairs of words over all concepts. Following the notations of §6.3.1 where waj and wbj

are words in languages a and b respectively from concept Cj ,

d(a, b) =

∑
Cj ,waj ̸=∅,wbj ̸=∅ d(waj, wbj)

|{Cj : waj ̸= ∅, wbj ̸= ∅}|
(6.6)
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Taking an average over all languages essentially enforces multilateral comparison, i.e.,

multiple languages are being considered equally to compute the outcome. Further, the

algorithm thus described is the same as UPGMA tree construction method (Sokal and

Michener, 1958) where at any bifurcating node, a uniform rate of evolution is assumed

across daughter clades. The final similarity metric ŝ(A,B) is determined by the following

statistic that is computed based on a random permutation of words across each column

(taxon) which yields random distances d(A,B):

ŝ(A,B) =
E[d(A,B)]− d̂(A,B)

E[d(A,B)]
(6.7)

The p-value of two language clusters A and B is the frequency of the event d̂(A,B) ≥

d(A,B) relative to the total number of random permutations. Language clusters A and

B are considered to be related if the p-value is less than 0.05. The given languages are

termed related if the final two clusters that are merged at the root are related (Kessler and

Lehtonen, 2006).

Kessler (2007) ran this test using various word similarity metrics which almost give

similar results. Among these metrics, we ran on P1-dolgo which is a binary metric that

determines whether the consonant class of the word’s initial consonant matches or not.

Additionally, we employ the binary similarity measure introduced by Turchin et al. (2010)

to test the significance of the Altaic family where the first two consonants are considered.

We further test continuous word distances introduced by List (2010) (SCA) and List

(2012a) (LexStat) that are based on sequence alignment techniques which were introduced

in the context of automated cognate detection.

6.4.3 Implementation

We mapped the consonant classes to the protein alphabet since phylogenetic software

expects input as either nucleotide or amino acid sequences. Moreover, most of the amino

acid letters and Dolgopolsky classes are identical. In this regard, there is only one exception,

namely, ‘J’ which is absent in the former but present in the latter and is, hence, simply
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Method MKh Mun MKh-Mun IE Drav May MZ UAz MKh-May MKh-UAz AfA-LoBur
Related ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

P1-Dolgo 0.123
(<0.001)

0.243
(<0.001)

0.080
(<0.001)

0.071
(<0.001)

0.440
(<0.001)

0.228
(<0.001)

0.412
(<0.001)

0.572
(<0.001)

0.007
(<0.001)

0.005
(0.063)

0.017
(<0.001)

Turchin 0.019
(<0.001)

0.124
(<0.001)

0.019
(<0.001)

0.028
(<0.001)

0.292
(<0.001)

0.126
(<0.001)

0.256
(<0.001)

0.402
(<0.001)

0.003
(<0.001)

0.003
(0.005)

0.004
(<0.001)

LexStat 0.065
(<0.01)

0.138
(<0.01)

0.048
(<0.01)

0.036
(<0.01)

0.197
(<0.01)

0.129
(<0.01)

0.244
(<0.01)

0.306
(<0.01)

0.028
(<0.01)

0.018
(<0.01)

0.033
(<0.01)

SCA 0.087
(<0.01)

0.187
(<0.01)

0.074
(<0.01)

0.056
(<0.01)

0.296
(<0.01)

0.177
(<0.01)

0.304
(<0.01)

0.400
(<0.01)

0.015
(<0.01)

0.006
(<0.01)

0.031
(<0.01)

LRT 9.205
(<0.001)

1.58
(<0.001)

14.18
(<0.001)

26.154
(<0.001)

1.78
(<0.001)

68.212
(<0.001)

7.192
(<0.001)

10.448
(<0.001)

-14.359
(0.280)

-12.188
(0.065)

-10.768
(0.979)

Table 6.4: Significance testing on various existent and non-existent families. The values indicate
the similarity measure ŝ in the case of permutation tests and in the case of LRT they indicate the
mean of statistic δ̂. Values in parentheses indicate p-value. False positives are marked in red.

replaced with ‘I’, which is in turn absent in Dolgopolsky classes. The multiple sequence

alignments are obtained from CLUSTALW2 (Larkin et al., 2007) while the best trees and

their corresponding likelihoods were computed using IQ-TREE (Nguyen et al., 2015). As

described in §6.3.4 and §6.3.5, the proportions of invariant sites P 0
inv and P a

inv are set to

0.01 and 0.06 respectively for null (H0) and alternate (Ha) hypotheses. The parametric

bootstrap replicates are generated using AliSim (Ly-Trong et al., 2022), an extension

of IQ-TREE. To replicate as closely as possible, gaps present in the original character

matrices are retained in the replicates. We calculate the p-value based on a sample size

of k = 15. The outcomes are observed to be stable beyond this size. The word similarity

metrics used in the baseline models are computed by using Lingpy (List and Forkel, 2021).

For the phylogenetic tree construction task, MEGA11 (Tamura et al., 2021) was used to

deduce the maximum likelihood tree (ML-tree) with the aforementioned model with an

additional gamma rate heterogeneity parameter with two distinct rates whose shape is

estimated. We name this method ML-P+I+G2.

The generalized quartet distances (GQD) (Pompei et al., 2011) between the predicted

and the gold trees are computed from quartet distances obtained using qdist (Mailund

and Pedersen, 2004). The quartet distance between two trees measures the number of

four-leaf-subsets that have dissimilar topologies. Unlike biological phylogenetic trees,

language trees are often multifurcated. Hence, GQD excludes penalties over the order

of bifurcations. The code and relevant data have been made publicly available5. Further

implementation details can be found in README.md therein.

5https://github.com/mahesh-ak/PhyloVal

https://github.com/mahesh-ak/PhyloVal
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6.5 Results

The primary results are tabulated in Table 6.4, where the results of LRT (last row) are

compared with those of the multilateral permutation tests. Except for LRT, the column

‘Method’ indicates the distance metric employed in the permutation test. The row ‘Related’

indicates the current consensus about the relatedness of the language families. For the

permutation test, the values indicate the similarity metric ŝ defined in Eq. (6.7), as measured

at the root. On the other hand, for LRT the values indicate the mean of observed δ̂ (see

§6.3.5). The p-values are indicated in parentheses. The standard threshold of 0.05 is

assumed for p-values. Please refer to Table 6.2 and Table 6.3 for abbreviations of various

language families.

One can observe that false positives, indicated in red, are absent for LRT, in contrast

with multilateral permutation tests which exhibit false positives in all cases (except P1-

Dolgo for MKh-UAz). However, we note that the similarity scores of the Turchin measure

are consistently small (< 0.005) for negatives irrespective of the significance implied by

the p-value. Hence, it may be noted that Turchin could be a good measure for permutation

tests when similarity scores are taken into consideration.

Further, one can observe from Table 6.4 that mean δ̂ values are small for valid families

such as Mun and Drav. This has to do with the fact that the data for these families consists

of a lower number of taxa (see Table 6.2). Hence, althought the δ̂ measure need not

imply strength, its sign implies which hypothesis is to be preferred, i.e., the one with a

larger proportion of invariant sites in case of a positive value and the one with a smaller

proportion of invariant sites in case of a negative value.

6.5.1 Tree Construction

As mentioned in §6.4.1, both the methods output a tree, and, therefore, the methods have

been evaluated on the tree construction task. The purpose of this task is to ensure that

the proposed methods have indeed a good sense of phylogenetic inference and are, hence,

appropriate to carry out significance tests over phylogenies. The results are tabulated
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Method AA AN IE PN ST Avg
P1-Dolgo 0.060 0.208 0.033 0.175 0.188 0.133
Turchin 0.069 0.195 0.058 0.175 0.275 0.154
LexStat 0.051 0.178 0.020 0.164 0.096 0.102
SCA 0.049 0.119 0.025 0.166 0.087 0.089
ML-P+I+G2 0.026 0.065 0.033 0.145 0.125 0.079

Table 6.5: Comparison of the methods on phylogenetic tree construction task provided as GQD
scores. The best results are in bold.

Figure 6.3: Mean GQD plotted for various methods

in Table 6.5. The mean GQD scores are plotted in Figure 6.3. By comparing with the

mean scores of state-of-the-art language phylogeny inference methods on this data, ML-

P+I+G2 (0.079) is a few steps behind Bayesian inferred tree (0.066) (Rama et al., 2018)

and maximum a posteriori tree (0.051) (Rama and List, 2019). Hence, it can be concluded

that consonant-class-based character matrix encoding is almost as good as cognate-based

binary character matrix encoding while probabilistic methods based on character matrices

are superior to distance-based methods for this task. Among the distance-based approaches,

one with the SCA metric performs best. A similar situation was observed in Rama et al.

(2018) and Rama and List (2019) where SCA-based cognates yield the best performance.

However, it should be noted that SCA and LexStat-based measures yield false positives

on significance testing (Table 6.4) despite their performance on this task. The low GQD

scores across the methods in general demonstrate that the 100-200 wordlists are indeed

good enough to infer language phylogenies.
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Method Drav-IE Drav-IE-Kart May-MZ May-UAz May-MZ-UAz

P1-Dolgo 0.046
(<0.001)

0.038
(<0.001)

0.033
(<0.001)

0.046
(<0.001)

0.036
(<0.001)

Turchin 0.017
(<0.001)

0.002
(0.197)

0.012
(<0.001)

0.012
(<0.001)

0.008
(<0.001)

LexStat 0.024
(<0.01)

0.014
(<0.01)

0.033
(<0.01)

0.027
(<0.01)

0.024
(<0.01)

SCA 0.024
(<0.01)

0.007
(0.01)

0.019
(<0.01)

0.024
(<0.01)

0.015
(<0.01)

LRT 24.882
(<0.001)

0.316
(<0.001)

20.988
(<0.001)

-1.035
(<0.001)

-9.819
(<0.001)

Table 6.6: Results of evaluation of macro families. Parentheses contain p-values.

6.6 Evaluation of Macro Families

We apply the tests on groupings of a few families from proposed macro families, namely

Nostratic, Macro-Mayan, and Amerind. Under Nostratic, we test for groupings Dravidian-

Indo-European (Drav-IE) and Dravidian-Indo-European-Kartvelian (Drav-IE-Kart) while

we test Mayan-Mixe-Zoque (May-MZ) under Macro-Mayan and Mayan-Uto-Aztecan

(May-UAz), Mayan-Mixe-Zoque-Uto-Aztecan (May-MZ-UAz) under Amerind. The results

are tabulated in Table 6.6. While going by the p-values, the LRT test seems to support all

of the mentioned families. However, the mean LRT statistic δ̂ is weak (negative or close to

0) for Drav-IE-Kart (Nostratic) and May-UAz, May-MZ-UAz (Amerind). In other words,

by looking at Eq. (6.4), the alternate hypothesis Ha, i.e., having higher invariant sites is

not preferred. Thus, it may be concluded that LRT is a highly sensitive test since the mere

addition of a single language (Georgian) to a strongly supported group of 16 languages

(Drav-IE) alters the outcome drastically. This is a desirable property since the presence

of even a single anomaly, an unrelated language in this case, can be detected. Note that

other combinations in Nostratic such as Drav-Kart or IE-Kart are much weaker and not

well supported by the permutation test itself, which is elaborated as follows.

6.6.1 Analysis of Permutation tests on Nostratic

Bilateral significances on Nostratic grouping Drav-IE-Kart for various distance metrics are

reported in Figure 6.4, where the pairwise relationships based on p-value (with threshold
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(a) P1-Dolgo (b) Turchin

(c) SCA (d) LexStat

Figure 6.4: Bilateral (pairwise) significance among the languages of Nostratic grouping. The
yellow shade implies that the relationship is statistically significant (p < 0.05), while the purple
shade implies otherwise.

0.05) are color-coded. The computation follows the same steps as defined in §6.4.2 except

that distances and similarities are calculated over pairs of languages instead of language

clusters. This indeed forms the first iteration of a complete multilateral test.

The languages are abbreviated in Figure 6.4 as follows: Old Georgian (Ge), Old

Kannada (Ka), Old Telugu (Te), Old Tamil (Ta), Old Malayalam (Ma), Ancient Greek (Gr),

Old Armenian (Ar), Middle Persian (Pe), Sanskrit (Sa), Pali (Pa), Old Church Slavonic

(CS), Old Irish (Ir), Latin (La), Old French (Fr), Old High German (HG), Old English (En)

and Old Norse (No).

It is visible that for each metric, languages of the same family (IE and Drav) are almost

always related pairwise. Secondly, many pairs from Drav-IE appear related. On the other

hand, except for LexStat, Georgian shows to be related to at most two languages from

the Drav-IE grouping. Yet, in the permutation tests for these metrics, except for Turchin

(Table 6.6), Drav-IE-Kart appears significantly related with sometimes even good similarity

scores (in the case of P1-Dolgo). All that can be concluded here is that, except for the
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(a) IE (b) Drav-IE

(c) Drav-IE-Kart

Figure 6.5: Comparison of unrooted ML-trees on various groupings of Nostratic language families

LexStat metric, permutation tests are very sensitive to pairwise language comparisons

and may not yield false positives. However, if Drav-IE-Kart is to be considered a valid

grouping, these tests may be said to yield false negatives.

6.6.2 Analysis of ML-trees of Nostratic

Unrooted maximum likelihood trees (ML-trees) are drawn in Figure 6.5 on various sub-

groupings of Nostratic using MEGA11 assuming the Poisson+I model. For the IE tree

(Figure 6.5(a)), the sub-families, except for the position of Old Church Slavonic, are highly

faithful reflecting the existing notions. For instance, the topology of the Germanic family,



82

Figure 6.6: Geographical distribution of the language families/sub-families considered within the
Nostratic grouping roughly around 10th century CE. (Created with Mango)

i.e., (Old Norse, (Old English, Old High German)) contains the valid West-Germanic

branch (Old English, Old High German). Similarly, the Italo-Celtic group (Old Irish,

(Latin, Old French)) is visible. Also, one can distinguish a clear boundary between Western

and Eastern IE languages reflecting the geographical distribution. Only the position of Old

Church Slavonic which appears intruded into the Indo-Iranian branch is problematic in

this tree.

Furthermore, the addition of the Dravidian family in Drav-IE does not alter the IE

topology (Figure 6.5(b)). It is intriguing to note the western inclination of Dravidian

given its eastern geographical location in the present day. However, this is in line with the

observation of Caldwell (1875), the founder of comparative Dravidian linguistics himself.

This can be inferred by noticing few words of similar appearence across the two families:

‘all’ Ta, Ma, Ka, Te /el:a/ vs HG /al/, En /æAë/, No /al:Ir/; ‘many’ Ta, Ma, Ka, Te /palV/ vs

Gr /polýs/; ‘one’ Ta /onru/, Ma /on:@/ vs La /u:num/, Ir /oin/, HG /aIn/; ‘short’ Ta /kuru/,

Ma /kuri/ vs OH /skurt/, Fr /kort/; ‘woman’ Ta, Ma, Ka /peï/ vs Ir /ben/, HG /kwEn/; ‘root’

https://mangomap.com/
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Ta, Ma, Te /Ve:R(u)/ vs HG /wurts/, En /wyrt/; ‘blood’ Ta, Ma /kuRut”i/ vs Ir /kru:/, CS

/krUvI/; ‘horn’ Ta /ko:úu/ Ka, Te /kombu/ vs La /kornu/, Gr /kéras/, and several others.

Most of these similarities were already pointed out by Caldwell (1875), who also identifies

them as similarities among Dravidian and ‘Western’ Indo-European languages. While,

there do exist potential cognates with the neighboring languages as found in ‘black’ Ta,

Ma, Ka /karu/ vs Sa /kr
"
ùïa/ or in ‘fruit’ Ta, Ma /paõam/ vs Sa /phalam/, those with the far

away languages are clearly the ones that are binding the two families. This fact is also

reflected in the position of the Dravidian family in the tree topology. This would be an

interesting scenario to research upon, which has unfortunately not received due attention

so far in the community of historical linguists.

Futhermore, the addition of Georgian invalidates the West-Germanic branch as well as

pushes Old Greek problematically into the Western group (Figure 6.5(c)). However, much

of the topology is undisturbed and one can also notice how the languages/families that are

located south of the Caucasus namely, Armenian, Georgian, and Dravidian are grouped.

For the geographical distributions of these languages, see Figure 6.6. Overall, it may be

concluded that the addition of unrelated or weakly related languages can alter the actual

topology.

Similar analyses in case of Macro-Mayan and Amerind families are provided in Fig.

6.7 & 6.8, where one can observe similar perturbations in topology (see Fig. 6.8) of one

family (Mayan) in presence of others (Mixe-Zoque and Uto-Aztecan).

6.7 Summary

In this chapter, we have presented a likelihood ratio test based on the proportions of

invariant sites to determine the genetic relatedness of a group of languages. Our proposed

test does not yield false positives, which is in contrast with previous permutation-based

tests that proved to be good only for pairwise language comparisons and not for validating

a language group. By applying this test, we have found strong supporting evidence for

macro-families such as Dravidian-Indo-European, Macro-Mayan (for Mayan-Mixe-Zoque,

and weak evidence for Nostratic (Dravidian-Indo-European-Kartvelian) and Amerind (for
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(a) P1-Dolgo (b) Turchin

(c) SCA (d) LexStat

Figure 6.7: Bilateral (pairwise) significance among the languages of Macro-Mayan/Amerind
grouping. The yellow shade implies that the relationship is statistically significant (p < 0.05),
while the purple shade implies otherwise. While moving across the diagonal, the first cluster of
significantly related languages is that of Mayan, the second is that of Mixe-Zoque and the thrid,
Uto-Aztecan

Mayan-Uto-Aztecan). Through secondary analyses, we have also shown that probabilistic-

based methods are superior to distance-based ones based on tree construction and the

correlation of topologies with geography. In this work we did not touch upon semantic

shifts, i.e., words changing meaning over time; for example, the word quick initially

meant ‘lively’. While considering semantic shifts may provide room for data manipulation

favoring any particular hypothesis, few semantic slots such as ‘bark’-‘skin’ are often found

to have common words. In such cases, the slots may be merged into one as suggested by

Kessler (2001). Further, incorporating grammatical features may improve the constructed

trees. Nevertheless, these are not included in significant testing since morphological

reconstruction comes later in the comparative method while significant tests focus around

the first step i.e., they question if gathered cognates are chance occurences.

In summary, before constructing phylogenies of a group of languages, the relatedness

of the group should be established through a significance test such as the one we have

presented. Otherwise, the phylogenic grouping would not only be questionable but may

also alter the topology of a related sub-group.
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(a) Mayan (b) Mayan-Mixe-Zoque

(c) Mayan-Uto-Aztecan (d) Mayan-Mixe-Zoque-Uto-Aztecan

Figure 6.8: Comparison of unrooted ML-trees on various groupings of Macro-Mayan/Amerind
language families

Limitations

The values of P 0
inv and P a

inv (§6.3.5) are roughly decided based on the estimated ones

from two examples, namely, Afrasian-Lolo-Burmese as a negative example and Indo-

European as a positive example. The question of what should be the most appropriate

values that should make the test optimal is not addressed here. Ideally, to address this

question, more data is needed with several positive and negative examples to search

for optimal values of these parameters. Also, the exact values may require calibration

according to the phylogenetic software used since there could be significant differences in

the implementations. Secondly, while analyzing Nostratic languages, Uralic, an important
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language family, has not been included due to the selection criteria (§6.4.1) that the

languages should have been attested before 10th century CE. To include Uralic, the

(Nostratic) languages that are attested around the same period as the earliest attested ones

from Uralic (roughly 1300 CE onwards) should be considered to make ‘fair’ comparisons.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The thesis has started by mentioning three central problems of computational historical

linguistics namely proto-language reconstruction, cognate detection, and significance

testing of the genetic relatedness, along with the existing methods and their limitations.

Certain aims have been then set in Chapter 3 which are listed as follows.

• To develop computational tools for the aforementioned three problems that can

overcome the limitations of existing methods.

• To maintain an integration of biological insights throughout following the tradition

of computational historical linguistics.

• To evaluate the performances of the proposed methods against those of existing

methods especially at low resource settings.

• To maintain multilingualism, i.e., to ensure language diversity through out the

experiments.

• To bear broader implications, especially by applying the significance tests on pro-

posed macro-families.

The contributions of this thesis fulfilling the above aims are summarized as follows.
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7.1.1 Development of Computational Tools

To overcome the limitations of the existing methods, the following methods have been

developed for the problems addressed in this thesis:

1. We have proposed Cognate Transformer (CogTran) for the problems of proto-

language reconstruction and cognate reflex prediction which could outperform the

existing methods, especially when pre-trained, demonstrating the efficacy of transfer

learning.

2. We have proposed CogTran2, i.e., CogTran with link prediction head for the problem

of automatic cognate detection which could outperform the existing methods in

the presence of little additional supervision. Thus, the model could utilize well the

labeled information, unlike the previous methods.

3. We proposed a likelihood ratio test of genetic relationship based on the proportions

of the phonetically conserved sites which, unlike the existing methods, does not

exhibit the problems of false positives nor does it require reconstructed proto-forms.

7.1.2 Integration of Biological Insights

Following the tradition of computational historical linguistics, the methods proposed in

this thesis maintain a constant integration of insights from evolutionary biology in the

following ways:

1. CogTran is based on a protein language model, namely MSA transformer (Rao et al.,

2021) that acts on a multiple sequence alignment (MSA) input.

2. CogTran2 incorporates outer-product mean and pairwise module from the protein

structure predictor AlphaFold2 (Jumper et al., 2021), among which pairwise module

was supposed to capture transitivity of cognacy. Further, it is an end-to-end architec-

ture that directly takes an MSA as input and gives cognate cluster linkages as output.

This workflow contributes to a significant speed-up since it circumvents pairwise

computations usually found in the previous methods.
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3. LRT is inspired by the phylogenetic hypothesis testing approach found in molecular

phylogenetics.

7.1.3 Performance Evaluation

The performances of all the methods proposed in this thesis have been evaluated against

those of previous methods and are found to be better than them. In particular, CogTran

proves to be efficient at higher test proportions i.e., at low resource settings. Similarly,

CogTran2 could be adapted to new language families by only learning from a few concepts.

Thus, these models are useful in low-resource settings which reflect the linguistic reality.

7.1.4 Multilinguality

All the datasets in this thesis come from diverse language families, thus fulfilling the

criteria of multilingualism in our experiments. The results give confidence that the models

can be easily applied to any language family.

7.1.5 Broader Implications

Finally, this thesis does not just provide better assistance to the historical linguists but also

bears some important results. Application of significance tests on macro-families (§6.6)

namely Macro-Mayan and Nostratic respectively suggest genetic relatedness of Mayan-

Mixe-Zoquen and Indo-European-Dravidian. The potential relatedness of Indo-European

and Dravidian has important consequences of rethinking the past of Indian subcontinent

where these languages are native to about 98%1 of the population. Further, it can also

potentially impact the current understanding of the homelands of these language families.

7.2 Future Work

Several problems can be looked upon in the future related to either those emerging out of

the limitations of the proposed methods or those unaddressed in this thesis. Some of these
1Indo-Aryan consists of about 78%, while Dravidian 20% (https://www.britannica.com/topic/

Indo-Aryan-languages)

https://www.britannica.com/topic/Indo-Aryan-languages
https://www.britannica.com/topic/Indo-Aryan-languages
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are described as follows.

7.2.1 Automated Sound Correspondence Inference

We briefly mentioned some aspects of sound correspondences in §4.5.5 and §5.6.3, espe-

cially in the latter case where CogTran2 appeared to have learned some sound correspon-

dences such as Ancient Greek k ∼ German h. However, the automatic extraction of such

sound correspondences from the wordlists of related languages is not mentioned. A recent

approach to this problem by List (2019a) solves it by framing the task as a clique-cover

problem. However, conditional sound changes, such as palatalization, are not addressed

therein which otherwise seem to be captured by CogTran (§4.5.5). Overall, it would be

interesting for future work to extract sound correspondences from CogTran or CogTran2

and compare them with that of the clique-cover-based method.

7.2.2 Multiple Sequence Alignment as part of the Neural Pipeline

Algorithms employed to build MSAs in this thesis are either from the LingPy library (List

and Forkel, 2021) or Clustal W (Larkin et al., 2007). LingPy internally uses DIALIGN

(Morgenstern et al., 1998), a progressive alignment tool which considers both global

and local alignments. Another tool used in building MSA from phonetic sequences is

T-coffee (Notredame et al., 2000) used in Jäger (2022). All three tools namely, T-coffee,

DIALIGN, and Clustal W are based on progressive alignment. Other popular MSA tools in

bioinformatics include progressive alignment-based MUSCLE (Edgar, 2004), fast-fourier

transform-based MAFFT (Katoh et al., 2002), and profile Hidden Markov Model-based

Clustal Omega (Sievers and Higgins, 2014).

Since all the methods in this thesis start from MSA, the MSA quality becomes a

bottleneck in their performances. To bring further improvements, it is sensible to include

MSA in the neural pipelines at least allowing for minor differentiable changes on top of the

MSAs produced by the tools. Recent neural approaches to MSA in bioinformatics involve

reinforcement learning (Mircea et al., 2018; Ramakrishnan et al., 2018; Jafari et al., 2019),

transformer (Dotan et al., 2023), or both (Liu et al., 2023).
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7.2.3 Phoneme Substitution Models in Phylogenetic Inference

The substitution model employed to compute likelihoods in Chapter 6 (§6.3.2) assumes

equal rates of character substitution. However, in reality, sound change rates are not

identical among various sounds. For instance, it is more likely for an alveolar stop T to

alternate with a sibilant S or a palatal stop C than with a velar stop K. In molecular biology,

such a situation is handled by models with unequal mutation rates such as that of Kimura

(1980), which assumes unequal mutation rates between a purine (A or G) and a pyrimidine

(C or T). In the case of amino acids, the rates are often determined empirically such as in

the case of BLOSUM62 matrix (Henikoff and Henikoff, 1992). Similar transition matrices

are found in the computation of sound class-based alignment of List (2010), which can be

incorporated into the likelihood computation.

Further, the model can be enriched by imposing regularity of sound changes and non-

uniform rates across different prosodic positions such as word-initial versus medial. Further,

LRT assumes site independence (§6.3.3) in the likelihood computation. More complex

models may be proposed lifting this assumption. However, the number of parameters

should be restricted to small numbers considering the amount of data available.

Other potential works can focus on addressing the limitations mentioned in previous

chapters such as the problem of metathesis (§4.5.3), partial cognacy (§5.6.3), and further

inclusion of languages and families in the significance testing mentioned in Chapter 6.

7.3 Concluding Remarks

Thus, this thesis has presented a cognate transformer and a likelihood ratio test, both

inspired by biological sequence evolution, for addressing three central problems in the

study of language change namely gathering cognates, reconstructing ancestral words, and

ascertaining genetic relationships, bearing substantial results. One salient outcome is major

statistical support for the Indo-European affiliation of the Dravidian languages.

Through this thesis, I learned how elegant solutions can be provided by observing cross-

disciplinarily for structurally similar problems. I hope this thesis will generate a common
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interest in the readers toward historical linguistics from a computational perspective as

well as a general sense of appreciation for the languages spoken by one’s ancestors.
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Appendix A

Row and Column Attentions

The details of row and column attentions of Cognate Transformer are provided here, which

are based on MSA Transformer (Rao et al., 2021).

Given the MSA embedding m ∈ Rr×c×d with r rows (number of sequences), c columns

(sequence length), and embedding dimension d, the row attention output for a single head

is computed as follows,

oij ←
∑
k

softmaxk

(
1√
c
q⊤
ijkik

)
vik

Queries qij , keys kik and values vik are linear projections of m and have the usual

connotations. In other words,

qij,kij,vij ← LinearNoBias(mij)

Similarly, column attention computation for a single head is as follows,

oij ←
∑
k

softmaxk

(
1√
c
q⊤
ijkkj

)
vkj

This is followed by the usual concatenation and projection of the representations from

different heads. In other words, let oh
ij be attention output from head h,

m′
ij ← Linear(concathoh

ij)
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All initial linear layers project to intermediate size, while projection at the end brings

it back to the hidden size d (§5.4). Implementation of CogTran uses equal hidden and

intermediate sizes (§5.5.2). The row attention is tied, i.e., uses the same attention map

across rows (Rao et al., 2021). On the other hand, column attention is untied, i.e., attention

maps are different for each column. This would be useful since sound changes vary across

positions in a word.



Appendix B

Miscellaneous Details of CogTran2

Figure B.1: Outgoing edges / around starting node i (left) and incoming edges / around ending
node j (right)

Additional details of the modules used in CogTran2 (Chapter 5) are provided here,

which are based on AlphaFold2 (Jumper et al., 2021).

B.1 Outer Product Mean

If m ∈ Rr×c×d (§5.4.2) is the output of CogTran, outer product mean is performed as

follows,

zij ← Linear (meank {Linear(mik)⊗ Linear(mjk)})

This operation is preceded by a layer norm. Note that this is slightly different than in
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the case of AlphaFold2, since in our case, the outer product acts over rows while the mean

over columns. The roles of rows and columns get interchanged in the case of AlphaFold2.

B.2 Triangle Multiplication Updates

The triangle multiplication update at of an edge representation zij of dimension d (§5.4.4),

using the representations of outgoing edges is given by,

z′
ij ← σ(Linear(zij)) · Linear (LayerNorm (

∑
k σ(Linear(zik)) · σ(Linear(zjk))))

In the case of using the incoming edges, it is performed similarly as follows,

z′
ij ← σ(Linear(zij)) · Linear (LayerNorm (

∑
k σ(Linear(zki)) · σ(Linear(zkj))))

B.3 Triangle Attention

Attention computation for a single head around the starting node i of an edge ij is given as

follows,

oij ←
∑
k

softmaxk

(
1√
c
q⊤
ijkik + bjk

)
vik

Queries qij , keys kik and values vik are linear projections of the edge representations

z ∈ Rr×r×d (§5.4.4) and have the usual connotations. In other words,

qij,kij,vij ← LinearNoBias(zij)

The bias bjk, another linear projection of the edge representation zjk, with projection

weights, comes from the edge jk viz., opposite of node i. Similarly, attention computation

for a single head around the ending node j is given as follows,
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oij ←
∑
k

softmaxk

(
1√
c
q⊤
ijkkj + bki

)
vkj

The pairwise modules use gated attention. In other words, given oh
ij for attention head

h, the output for this head would be,

o′h
ij ← σ(Linear(zij)) · oh

ij

This is followed by the usual concatenation and projection of the representations from

different heads:

z′
ij ← Linear(concatho′h

ij )

All initial linear layers project to intermediate size, while projection at the end brings

it back to the hidden size d (§5.4). Implementation of CogTran2 uses equal hidden and

intermediate sizes (§5.5.2).





Appendix C

BCubed Cluster Evaluation Metrics

BCubed metrics for evaluating the quality of the clustering algorithms are outlined here as

introduced by Amigó et al. (2009) based on Bagga and Baldwin (1998).

Figure C.1: Computation of BCubed Precision and Recall

The computation of BCubed Precision and Recall is illustrated in Figure C.1. Formally,

for an entity e, let L(e) denote the category (gold labels) of the entity and C(e) be the

assigned cluster. Correctness between a pair of entities checks that they are assigned the
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same cluster if and only if they actually belong to the same category. In other words,

Correctness(e, e′) =


1 C(e) = C(e′) ⇐⇒ L(e) = L(e′)

0 otherwise

BCubed Precision of an item is the proportion of items in its cluster that have same category.

Overall precision is the average of all items given as follows,

BCubed Precision = AvgeAvge′:C(e′)=C(e)Correctness(e, e′)

BCubed Recall is similarly defined,

BCubed Recall = AvgeAvge′:L(e′)=L(e)Correctness(e, e′)

BCubed F score follows the usual definition viz., the harmonic mean of BCubed Precision

and BCubed Recall.
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